湖北省黄冈市2018年中考数学真题试题(考试时间120分钟满分120分)第Ⅰ卷(选择题共18分)一、选择题(本题共6小题,每小题3分,共18分。每小题给出4个选项中,有且只有一个答案是正确的)1.-的相反数是A.-B.-C.D.2.下列运算结果正确的是A.3a3·2a2=6a6B.(-2a)2=-4a2C.tan45°=D.cos30°=3.函数y=中自变量x的取值范围是A.x≥-1且x≠1B.x≥-1C.x≠1D.-1≤x<14.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.2(第5题图)6.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为A.-1B.2C.0或2D.-1或2第Ⅱ卷(非选择题共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16800000用科学计数法表示为______________________.8.因式分解:x3-9x=___________________________.9.化简(-1)0+()-2-+=________________________.10.若a-=,则a2+值为_______________________.11.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_________________cm(杯壁厚度不计).(第13题图)14.在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题(本题共10题,满分78分)15.(本题满分5分)求满足不等式组:x-3(x-2)≤8的所有整数解.x-1<3-x16.(本题满分6分)在端午节来临之际,某商店订购了A型和B型两种粽子。A型粽子28元/千克,B型粽子24元/千克。若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克。17.(本题满分8分)央视“经典咏流传”开播以来受到社会广泛关注。我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图。请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”。(1)被调查的总人数是_____________人,扇形统计图中C部分所对应的扇形圆心角的度数为_______.(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有__________人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率。18.(本题满分7分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.(第18题图)19.(本题满分6分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.20.(本题满分8分)如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.(第20题图)21.(本题满分7分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.(第21题图)22.(本题满分8分)已知直线l:y=kx+1与抛物线y=x2-4x(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=-2时,求△OAB的面积.23.(本题满分9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=x+4(1≤x≤8,x为整数)-x+20(9≤x≤12,x为整数),每件产品的利润z(元)与月份x(月)的关系如下表:x123456789101112z191817161514131211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24.(本题满分14分)如图,在直角坐标系XOY中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB—BC—CO以每秒2个单位长的速度作匀速运动。过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动。(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.参考答案(考试时间120分钟满分120分)第Ⅰ卷(选择题共18分)一、选择题(本题共6小题,每小题3分,共18分。每小题给出4个选项中,有且只有一个答案是正确的)1.-的相反数是A.-B.-C.D.【考点】相反数.【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数;0的相反数是0。一般地,任意的一个有理数a,它的相反数是-a。a本身既可以是正数,也可以是负数,还可以是零。本题根据相反数的定义,可得答案.【解答】解:因为与-是符号不同的两个数所以-的相反数是.故选C.【点评】本题考查了绝对值的性质,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.2.下列运算结果正确的是A.3a3·2a2=6a6B.(-2a)2=-4a2C.tan45°=D.cos30°=【考点】同底数幂的乘法与除法、幂的乘方,以及特殊角的三角函数值。【分析】根据同底数幂的乘法、幂的乘方的运算法则以及特殊角的三角函数值计算即可.【解答】解:A.根据同底数幂的乘法,3a3·2a2=6a5,故本选项错误;B.根据幂的乘方,(-2a)2=4a2,故本选项错误C.根据特殊角的三角函数值,tan45°=1,故本选项错误;D.根据特殊角的三角函数值,cos30°=,故本选项正确.故选D.【点评】本题考查了同底数幂的乘法与除法、幂的乘方,以及特殊角的三角函数值,熟知运算法则、熟记特殊角的三角函数值是钥匙的关键。3.函数y=中自变量x的取值范围是A.x≥-1且x≠1B.x≥-1C.x≠1D.-1≤x<1【考点】函数自变量的取值范围。【分析】自变量x的取值范围必须使函数有意义,中x+1≥0;分式作为除式,则x-1≠0.综上即可得解。【解答】解:依题意,得x+1≥0x-1≠0∴x≥-1且x≠1.故选A.【点评】本题考查了函数自变量的取值范围。要使二次根式有意义,必须使被开方数为非负数;分式的分母不能为零。4.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为A.50°B.70°C.75°D.80°(第4题图)【考点】垂直平分线的性质,三角形的内角和定理。【分析】由三角形的内角和定理,得∠BAC的度数,又由垂直平分线的性质,知∠C=∠DAC=25°,从而得出∠BAD的度数。【解答】解:由三角形的内角和定理,得∠BAC=180°-∠B-∠C=180°-60°-25°=95°。又由垂直平分线的性质,知∠C=∠DAC=25°,∴∠BAC=∠BAD+∠DAC=∠BAD+∠C=∠BAD+25°=9∴∠BAD=95°-25°=70°.故选B.【点评】本题考查了垂直平分线的性质,三角形的内角和定理。熟练掌握性质和定理是解题的关键。5.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.2(第5题图)【考点】直角三角形斜边上的中线的性质,勾股定理。【分析】由直角三角形斜边上的中线等于斜边的一半,可得CE=AE=5,又知AD=2,可得DE=AE-AD=5-2=3,在Rt△CDE中,运用勾股定理可得直角边CD的长。【解答】解:在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,∴CE=AE=5,又∵AD=2,∴DE=AE-AD=5-2=3,∵CD为AB边上的高∴∠CDE=90°,∴△CDE为Rt△∴CD===4故选C.【点评】本题考查了直角三角形斜边上的中线的性质,勾股定理。得出DE的长是解题的关键。6.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为A.-1B.2C.0或2D.-1或2【考点】不等式组,二次函数的最值。【分析】由题意知函数y=x2-2x+1≥1,可得出x的取值范围,再由a≤x≤a+1可得出a的值。【解答】解:∵当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,∴y=x2-2x+1≥1,即x2-2x≥0,∴x≥2或x≤0,当x≥2时,由a≤x,可得a=2,当x≤0时,由x≤a+1,可得a+1=0,即a=-1综上,a的值为2或-1,故选D.【点评】本题考查了不等式组.弄清题意,解不等式组是关键。第Ⅱ卷(非选择题共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16800000用科学计数法表示为______________________.【考点】用科学记数法表示较大的数。【分析】确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于16800000有8位,所以可以确定n=8-1=7.【解答】解:16800000=1.68×107.故答案为:1.68×107.【点评】本题考查了科学记数法。把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.8.因式分解:x3-9x=___________________________.【考点】因式分解。【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3-9x=x(x2-9),=x(x+3)(x-3).故答案为:x(x+3)(x-3).【点评】本题考查了因式分解-提取公因式法和公式法的综合运用.9.化简(-1)0+()-2-+=
湖北省黄冈市2018年中考数学真题试题(含解析)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片