专题05二次函数的实际应用图形问题1.某校九年级数学兴趣小组在社会实践活动中,进行了如下的专题探究;一定长度的铝合金材料,将它设计成外观为长方形的框,在实际使用中,如果竖档越多,窗框承重就越大,如果窗框面积越大,采光效果就越好.小组讨论后,同学们做了以下试验: 请根据以上图案回答下列问题:(1)在图案①中,如果铝合金材料总长度(图中所有黑线的长度和)为,当为,窗框的面积是______;(2)在图案②中,如果铝合金材料总长度为,试探究长为多少时,窗框的面积最大,最大为多少?(3)经过不断的试验,他们发现:总长度一定时,竖档越多,窗框的最大面积越小,试验证:当总长还是时,对于图案③的最大面积,图案④不能达到这个面积.2.工匠师傅准备从六边形的铁皮中,裁出一块矩形铁皮制作工件,如图所示.经测量,,与之间的距离为2米,米,米,,.,,是工匠师傅画出的裁剪虚线.当的长度为多少时,矩形铁皮的面积最大,最大面积是多少? 3.某建筑物的窗户如图所示,上半部分是等腰三角形,,,点、、分别是边、、的中点;下半部分四边形是矩形,,制造窗户框的材料总长为16米(图中所有黑线的长度和),设米,米. (1)求与之间的函数关系式,并求出自变量的取值范围;(2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.图形运动问题4.如图(单位:cm),等腰直角以2cm/s的速度沿直线l向正方形移动,直到与重合,当运动时间为xs时,与正方形重叠部分的面积为ycm2,下列图象中能反映y与x的函数关系的是( ) A. B. C. D. 5.如图,一个边长为的菱形,,过点作直线,将直线沿线段向右平移,直至经过点时停止,在平移的过程中,若菱形在直线左边的部分面积为,则与直线平移的距离之间的函数图象大致为( ) A. B. C. D. 6.如图,正方形的边长为,点O为正方形的中心,点P从点A出发沿运动,同时点Q从点B出发沿运动,连接,在移动的过程中始终保持,已知点P的运动速度为,设点P的运动时间为,的面积为,下列图象能正确反映出S与t的函数关系的是( ) A. B. C. D. 销售利润问题7.某公司经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,销售量y(千克)随销售单价x(元/千克)的变化而变化,具体关系如图所示,设这种绿茶在这段时间内的销售利润为w(元).解答下列问题: (1)求y与x的函数关系式;(2)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时内获得2000元的销售利润,销售单价应定为多少元?(3)求销售单价为多少时销售利润最大?最大为多少元?8.某公司生产的某种时令商品每件成本为22元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)(天)的关系如表:时间x(天)1361036……日销售量m(件)9490847624……未来40天内,前20天每天的价格(元/件)与时间x(天)的函数关系式为(且x为整数),后20天每天的价格(元/件)与时间x(天)的函数关系式为(且x为整数).(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与x(天),直接写出日销售量m(件)与时间x(天)的函数关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(且a为整数)给贫困户,前20天中,每天扣除捐赠后的日销售利润随时间t(天),求出a的值,即可求前20天中公司共捐赠给贫困户多少钱?9.陕西大樱桃发展十分迅速,后来居上,成为我国三大樱桃产地之一,其中,铜川大樱桃最为出名,先后荣获“国家地理标志保护产品”“中国优质甜樱桃之都”等殊荣,每到樱桃成熟的季节,就会有大批的水果商收购樱桃.今年某村在销售前对本地市场进行调查发现:当批发价为万元/吨时,每天可售出吨,每吨每涨万元,每天的销量将减少1吨,据测算,每吨平均投入成本1万元,为了抢占市场,薄利多销,该村产业合作社决定,批发价不低于万元/吨,不高于万元/吨.设樱桃的批发价为x(万元/吨),每天获得的利润为y(万元),请解答下列问题:(1)用含x的代数式表示每天樱桃的销售量为_______(吨),并求出每天获得的利润y(万元)与批发价x(万元/吨)之间的函数关系式;(2)若该村每天批发樱桃要盈利15万元,求樱桃的批发价应定为多少万元/吨?(3)当樱桃的批发价定为多少万元时,每天所获的利润最大,并求出最大利润.投球问题10.一个物体从地面竖直向上抛,有这样的关系式:(不计空气阻力),其中是物体距离地面的高度,是初速度,是重力加速度(g取),t是抛出后所经历的时间.圆圆用发射器(发射器的高度忽略不计)将一个小球以的初速度从地面竖直向上抛.(1)当小球的高度为米时,求时间的值;(2)小球的高度能达到米吗?请作出判断,并说明理由.11.明明同学喜欢课外时间做数学探究活动.他使用内置传感器的“智能小球”进行掷小球活动,“智能小球”的运动轨迹可看作抛物线的一部分,如图,建立平面直角坐标系,“智能小球”从出手到着陆的过程中,竖直高度与水平距离可以用二次函数刻画,将“智能小球”从斜坡点处抛出,斜坡可以用一次函数刻画.某次训练时,“智能小球”回传的水平距离与竖直高度的几组对应数据如下: 水平距离竖直高度(1)根据题意,填空:________,________;“智能小球”达到的最高点的坐标为________;(2)“智能小球”在斜坡上的落点是,求点的坐标;(3)若在自变量的值满足的情况下,与其对应的函数值的最大值为5,直接写出的值.12.排球场的长度为,球网在场地中央且高度为,排球出手后的运动路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,排球运动过程中的竖直高度单位:与水平距离单位:近似满足函数关系.(1)某运动员第一次发球时,测得水平距离与竖直高度的几组数据如下:水平距离竖直高度①根据上述数据,求抛物线解析式;②判断该运动员第一次发球能否过网______填“能”或“不能”.(2)该运动员第二次发球时,排球运动过程中的竖直高度单位:与水平距离单位:近似满足函数关系,请问该运动员此次发球是否出界,并说明理由.增长率问题13.据省统计局公布的数据,合肥市2021年第一季度总值约为2.4千亿元人民币,若我市第三季度总值为千亿元人民币,平均每个季度增长的百分率为,则关于的函数表达式是( )A.B.C. D.14.某厂家2022年2月份生产口罩产量为180万只,4月份生产口罩的产量为461万只,设从2月份到4月份该厂家口罩产量的平均月增长率为x,根据题意可得方程( )A.B.C. D.15.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是,降价后的价格为元,原价为元,则y与之间的函数关系式为( )A.B.C. D.16.目前,随着新冠病毒毒力减弱,国家对新冠疫情防控的政策更加科学化,人们对新冠病毒的认识更加理性.佩戴口罩可以阻断传播途径,在一定程度上能够有效防止感染新型冠状病毒肺炎.某药品销售店将购进一批A、B两种类型口罩进行销售,A型口罩进价m元每盒,B型口罩进价30元每盒,若各购进m盒,成本为1375元.(1)求A型口罩的进价为多少元?(2)设两种口罩的售价均为x元,当A型口罩售价为30元时,可销售60盒,售价每提高1元,少销售5盒;B型口罩的销量y(盒)与售价x之间的关系为;若B型口罩的销售量不低于A型口罩的销售量的10倍,该药品销售店如何定价?才能使两种口罩的利润总和最高.17.重庆潼南某一蔬菜种植基地种植的一种蔬菜,它的成本是每千克元,售价是每千克元,年销量为万千克多吃绿色蔬菜有利于身体健康,因而绿色蔬菜倍受欢迎,十分畅销.为了获得更好的销量,保证人民的身体健康,基地准备拿出一定的资金作绿色开发,根据经验,若每年投入绿色开发的资金万元,该种蔬菜的年销量将是原年销量的倍,它们的关系如下表:万元(1)试估计并验证与之间的函数类型并求该函数的表达式;(2)若把利润看着是销售总额减去成本费和绿色开发的投入资金,试求年利润万元与绿色开发投入的资金万元的函数关系式;并求投入的资金不低于万元,又不超过万元时,取多少时,年利润最大,求出最大利润.(3)基地经调查:若增加种植人员的奖金,从而提高种植积极性,又可使销量增加,且增加的销量万千克与增加种植人员的奖金万元之间满足,若基地将投入万元用于绿色开发和提高种植人员的奖金,应怎样分配这笔资金才能使年利润达到万元且绿色开发投入大于奖金?18.如图,矩形ABCD中,,BC=6,点O是BC的中点.点E从点B出发,以每秒1个单位长度的速度沿射线BC匀速运动;点F从点O出发,以每秒2个单位长度的速度沿射线OC匀速运动.E,F两点同时出发,运动时间为t秒(0≤t≤),在两点运动过程中,以EF为边作等边三角形EFG,使△EFG和矩形ABCD在射线BC的同侧.(1)若点G落在边AD上,求t的值;(2)若t=2,求△EFG和矩形ABCD重叠部分的周长;(3)在整个运动过程中,设△EFG和矩形ABCD重叠部分的面积为S,试求出S与t之间的函数表达式.
2023年数学九年级上册人教版专题05 二次函数的实际应用(原卷版)(人教版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片