2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则中元素的个数为()A.2 B.3 C.4 D.62.复数的虚部是()A. B. C. D.3.在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是()A. B.C. D.4.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为()(ln19≈3)A.60 B.63 C.66 D.695.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0) B.(,0) C.(1,0) D.(2,0)6.已知向量a,b满足,,,则()A. B. C. D.7.在△ABC中,cosC=,AC=4,BC=3,则cosB=()A. B. C. D.8.下图为某几何体的三视图,则该几何体的表面积是()A.6+4 B.4+4 C.6+2 D.4+29.已知2tanθ–tan(θ+)=7,则tanθ=()A.–2 B.–1 C.1 D.210.若直线l与曲线y=和x2+y2=都相切,则l的方程为()A.y=2x+1 B.y=2x+ C.y=x+1 D.y=x+11.设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1 B.2 C.4 D.812.已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a400空气质量好空气质量不好附:,P(K2≥k)0.0500.0100.001k3.8416.63510.82819.如图,在长方体中,点分别在棱上,且,.(1)证明:点在平面内;(2)若,,,求二面角的正弦值.20.已知椭圆的离心率为,,分别为的左、右顶点.(1)求的方程;(2)若点在上,点在直线上,且,,求的面积.21.设函数,曲线在点(,f())处的切线与y轴垂直.(1)求b.(2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy中,曲线C的参数方程为(t为参数且t≠1),C与坐标轴交于A、B两点.(1)求;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.[选修4—5:不等式选讲](10分)23.设a,b,cR,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥.
2020年全国统一高考数学试卷(理科)(新课标ⅲ)(原卷版)(1)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片