2021年江西高考文数真题及解析

2023-10-27 · U3 上传 · 18页 · 1.4 M

www.ks5u.com绝密★启用前2021年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,则()A. B. C. D.2.设,则()A. B. C. D.3.已知命题﹔命题﹐,则下列命题中为真命题的是()A. B. C. D.4.函数的最小正周期和最大值分别是()A.和 B.和2 C.和 D.和25.若满足约束条件则的最小值为()A.18 B.10 C.6 D.46.()A. B. C. D.7.在区间随机取1个数,则取到的数小于的概率为()A. B. C. D.8.下列函数中最小值为4的是()A. B.C. D.9.设函数,则下列函数中为奇函数的是()A. B. C. D.10.在正方体中,P为的中点,则直线与所成的角为()A. B. C. D.11.设B是椭圆的上顶点,点P在C上,则的最大值为()A. B. C. D.212.设,若为函数的极大值点,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,若,则_________.14.双曲线的右焦点到直线的距离为________.15.记的内角A,B,C的对边分别为a,b,c,面积为,,,则________.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).三、解答题.共70分.解答应写出文字说明,证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.(1)求,,,;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).18.如图,四棱锥的底面是矩形,底面,M为的中点,且.(1)证明:平面平面;(2)若,求四棱锥的体积.19.设是首项为1的等比数列,数列满足.已知,,成等差数列.(1)求和的通项公式;(2)记和分别为和的前n项和.证明:.20.已知抛物线的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.21.已知函数.(1)讨论的单调性;(2)求曲线过坐标原点的切线与曲线的公共点的坐标.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做.则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系中,☉C的圆心为,半径为1.(1)写出☉C的一个参数方程;(2)过点作☉C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.[选修4—5:不等式选讲]23.已知函数.(1)当时,求不等式解集;(2)若,求a的取值范围. www.ks5u.com2021年普通高等学校招生全国统一考试文科数学答案解析一、选择题:1.A解析:由题意可得:,则.故选A.2.C解析:由题意可得:.故选C.3.A解析:由于,所以命题为真命题;由于,所以,所以命题为真命题;所以为真命题,、、为假命题.故选A.4.C解析:由题,,所以的最小正周期为,最大值为.故选C.5.C解析:由题意,作出可行域,如图阴影部分所示,由可得点,转换目标函数为,上下平移直线,数形结合可得当直线过点时,取最小值,此时.故选C.6.D解析:由题意,.故选D.7.B解析:设“区间随机取1个数”,“取到的数小于”,所以.故选:B.8.C解析:对于A,,当且仅当时取等号,所以其最小值为,A不符合题意;对于B,因为,,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;对于C,因为函数定义域为,而,,当且仅当,即时取等号,所以其最小值为,C符合题意;对于D,,函数定义域为,而且,如当,,D不符合题意.故选C.9.B解析:由题意可得,对于A,不是奇函数;对于B,是奇函数;对于C,,定义域不关于原点对称,不是奇函数;对于D,,定义域不关于原点对称,不是奇函数.故选B10.D解析:如图,连接,因为∥,所以或其补角为直线与所成的角,因为平面,所以,又,,所以平面,所以,设正方体棱长为2,则,,所以.故选D11.A解析:设点,因为,,所以,而,所以当时,的最大值为.故选A.12.D解析:若,则为单调函数,无极值点,不符合题意,故.依题意,为函数的极大值点,当时,由,,画出的图象如下图所示:由图可知,,故.当时,由时,,画出的图象如下图所示:由图可知,,故.综上所述,成立.故选D二、填空题:13.答案:解析:由题意结合向量平行的充分必要条件可得:,解方程可得:.故答案为.14.答案:解析:由已知,,所以双曲线的右焦点为,所以右焦点到直线距离为.故答案为15.答案:解析:由题意,,所以,所以,解得(负值舍去).故答案为.16.③④解析:选择侧视图为③,俯视图为④,如图所示,长方体中,,分别为棱的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥.故答案为:③④.三、解答题.(一)必考题:17.答案:(1);(2)新设备生产产品的该项指标的均值较旧设备没有显著提高.解析:(1),,,.(2)依题意,,,,所以新设备生产产品的该项指标的均值较旧设备没有显著提高.18.答案:(1)证明见解析;(2).解析:(1)因为底面,平面,所以,又,,所以平面,而平面,所以平面平面.(2)由(1)可知,平面,所以,从而,设,,则,即,解得,所以.因为底面,故四棱锥的体积为.19.答案:(1),;(2)证明见解析.解析:因为是首项为1的等比数列且,,成等差数列,所以,所以,即,解得,所以,所以.(2)证明:由(1)可得,,①,②①②得,所以,所以,所以.20.答案:(1);(2)最大值为.解析:(1)抛物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)设,则,所以,由在抛物线上可得,即,所以直线斜率,当时,;当时,,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线的斜率的最大值为.21.答案:(1)答案见解析;(2).解析:(1)由函数的解析式可得:,导函数的判别式,当时,在R上单调递增,当时,的解为:,当时,单调递增;当时,单调递减;当时,单调递增;综上可得:当时,在R上单调递增,当时,在上单调递增,在上单调递减,在上单调递增.(2)由题意可得:,,则切线方程为:,切线过坐标原点,则:,整理可得:,即:,解得:,则,即曲线过坐标原点的切线与曲线的公共点的坐标为.(二)选考题:[选修4-4:坐标系与参数方程]22.答案:(1),(为参数);(2)或.解析:(1)由题意,的普通方程为,所以的参数方程为,(为参数)(2)由题意,切线的斜率一定存在,设切线方程为,即,由圆心到直线的距离等于1可得,解得,所以切线方程为或,将,代入化简得或[选修4—5:不等式选讲]23.答案:(1).(2).解析:(1)当时,,表示数轴上的点到和的距离之和,则表示数轴上的点到和的距离之和不小于,故或,所以的解集为.(2)依题意,即恒成立,,故,所以或,解得.所以的取值范围是.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐