2021年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设2(z+)+3(z-)=4+6i,则z=().A.1-2i B.1+2i C.1+I D.1-i正确答案C解析设,利用共轭复数的定义以及复数的加减法可得出关于a、b的等式,解出这两个未知数的值,即可得出复数z.【详解】设,则,则,所以,,解得,因此,.故选:C.2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.B.SC.TD.Z正确答案C解析分析可得,由此可得出结论.【详解】任取,则,其中,所以,,故,因此,.故选:C.3.已知命题p:x∈R,sinx<1;命题q:x∈R,≥1,则下列命题中为真命题的是()A.pqB.pqC.pqD.(pVq)正确答案A解析由正弦函数的有界性确定命题p的真假性,由指数函数的知识确定命题q的真假性,由此确定正确选项.【详解】由于sin0=0,所以命题p为真命题;由于在R上为增函数,,所以,所以命题q为真命题;所以为真命题,、、为假命题.故选:A.4.设函数f(x)=,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+1正确答案B解析分别求出选项的函数解析式,再利用奇函数的定义即可.【详解】由题意可得,对于A,不是奇函数;对于B,是奇函数;对于C,,定义域不关于原点对称,不是奇函数;对于D,,定义域不关于原点对称,不是奇函数.故选:B5.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.正确答案D解析平移直线至,将直线与所成的角转化为与所成的角,解三角形即可.【详解】如图,连接,因为∥,所以或其补角为直线与所成的角,因为平面,所以,又,,所以平面,所以,设正方体棱长为2,则,,所以.故选:D6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种正确答案C解析先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.7.把函数y=f(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin(x-)的图像,则f(x)=()A.sin()B.sin()C.sin()D.sin()正确答案B解析解法一:从函数的图象出发,按照已知的变换顺序,逐次变换,得到,即得,再利用换元思想求得的解析表达式;解法二:从函数出发,逆向实施各步变换,利用平移伸缩变换法则得到的解析表达式.【详解】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到的图象,再把所得曲线向右平移个单位长度,应当得到的图象,根据已知得到了函数的图象,所以,令,则,所以,所以;解法二:由已知的函数逆向变换,第一步:向左平移个单位长度,得到的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,即为的图象,所以.故选:B.8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于的概率为()A.B.C.D.正确答案B解析设从区间中随机取出的数分别为,则实验的所有结果构成区域为,设事件A表示两数之和大于,则构成的区域为,分别求出对应的区域面积,根据几何概型的的概率公式即可解出.【详解】如图所示:设从区间中随机取出的数分别为,则实验的所有结果构成区域为,其面积为.设事件A表示两数之和大于,则构成的区域为,即图中的阴影部分,其面积为,所以.故选:B.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海盗的高。如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”。则海岛的高AB=().A:B:C:D:正确答案A解析利用平面相似的有关知识以及合分比性质即可解出.【详解】如图所示:由平面相似可知,,而,所以,而,即=.故选:A.10.设a≠0,若x=a为函数的极大值点,则().A:a<bB:a>bC:ab<a2D:ab>a2正确答案D解析先考虑函数的零点情况,注意零点左右附近函数值是否编号,结合极大值点的性质,对a进行分类讨论,画出f(x)图象,即可得到a,b所满足的关系,由此确定正确选项.【详解】若a=b,则为单调函数,无极值点,不符合题意,故.有x=a和x=b两个不同零点,且在x=a左右附近是不变号,在x=b左右附近是变号的.依题意,x=a为函数的极大值点,在x=a左右附近都是小于零的.当a<0时,由x>b,,画出f(x)的图象如下图所示:由图可知b0时,由x>b时,f(x)>0,画出f(x)的图象如下图所示:由图可知b>a,a>0,故.综上所述,成立.故选:D11.设B是椭圆C:(a>b>0)的上顶点,若C上的任意一点P都满足,则C的离心率的取值范围是().A:B:C:D:正确答案C解析设,由,根据两点间的距离公式表示出,分类讨论求出的最大值,再构建齐次不等式,解出即可.【详解】设,由,因为,,所以,因为,当,即时,,即,符合题意,由可得,即;当,即时,,即,化简得,,显然该不等式不成立.故选:C.12.设,,,则().A:a<b<cB:b<c<aC:b<a<cD:c<a<b正确答案B解析利用对数的运算和对数函数的单调性不难对a,b的大小作出判定,对于a与c,b与c的大小关系,将0.01换成x,分别构造函数,,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f(0)=0,g(0)=0即可得出a与c,b与c的大小关系.[详解],所以;下面比较C与a,b的大小关系.记,则,,由于所以当0
2021年江西高考理数真题及解析
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片