2017年海南省高考数学(原卷版)(文科)

2023-10-27 · U3 上传 · 5页 · 593.8 K

海南省2017年高考文科数学试题及答案(word版)(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合A1,2,3,B2,3,4,则AB=A.1,2,3,4B.1,2,3C.2,3,4D.1,3,42.(1+i)(2+i)=A.1-iB.1+3iC.3+iD.3+3i3.函数fx=sin(2x+)的最小正周期为3A.4B.2C.D.24.设非零向量a,b满足a+b=a-b则A.a⊥bB.a=bC.a∥bD.ab2x25.若a>1,则双曲线-y1的离心率的取值范围是a2A.(2,+)B.(2,2)C.(1,2)D.(1,2)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90B.63C.42D.362x+3y307.设x、y满足约束条件2x3y30。则z2xy的最小值是y30A.-15B.-9C.1D.918.函数f(x)ln(x22x8)的单调递增区间是A.(-,-2)B.(-,-1)C.(1,+)D.(4,+)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a=-1,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为1132A.B.C.D.10510512.过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M在x轴上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分.13.函数fx=2cosxsinx的最大值为.14.已知函数fx是定义在R上的奇函数,当x-,0时,fx2x3x2,则f2=15.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为16.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=2三、解答题:共70分。解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a3+b2=2.(1)若a3+b2=5,求{bn}的通项公式;(2)若T=21,求S118.(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角1形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠2ABC=90°。(1)证明:直线BC∥平面PAD;(2)若△PAD面积为27,求四棱锥P-ABCD的体积。19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法3新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较。附:P(0.0500.0100.001)k3.8416.63510.828n(adbc)2K2(ab)(cd)(ac)(bd)20.(12分)设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足(1)求点P的轨迹方程;(2)设点在直线x=-3上,且.证明过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1-x2)ex.(1)讨论f(x)的单调性;(2)当x0时,f(x)ax+1,求a的取值范围.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系。曲线C1的极坐标方程为(1)M为曲线C1的动点,点P在线段OM上,且满足OMOP=16,求点P的轨迹C2的直角坐标方程;π线C2上,求△OAB面积的最大值。(2)设点A的极坐标为(2,),点B在曲3423.[选修4-5:不等式选讲](10分)已知=2。证明:(1):(2)。5

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐