2010年海南省高考数学试题及答案(理科)

2023-10-27 · U3 上传 · 12页 · 1 M

2010年海南高考理科数学试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第(22)-(24)题为选考题,其他题为必考题。考生作答时,将答案答在答题卡上,在本试卷上答题无效。考试结束后,将本试卷和答题卡一并交回。注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。2、选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。4、保持卷面清洁,不折叠,不破损。5、做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。参考公式:样本数据的标准差锥体体积公式 其中为样本平均数其中为底面面积,为高柱体体积公式球的表面积,体积公式[来源:Z。xx。k.Com]其中为底面面积,为高其中R为球的半径第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)已知集合},,则(A)(0,2)(B)[0,2](C){0,2](D){0,1,2}(2)已知复数,是z的共轭复数,则=A.B.C.1D.2(3)曲线在点(-1,-1)处的切线方程为(A)y=2x+1(B)y=2x-1Cy=-2x-3D.y=-2x-2(4)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P到x轴距离d关于时间t的函数图像大致为(5)已知命题:函数在R为增函数,:函数在R为减函数,则在命题:,:,:和:中,真命题是(A),(B),(C),(D),(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为(A)100(B)200(C)300(D)400(7)如果执行右面的框图,输入,则输出的数等于(A)(B)(C)(D)(8)设偶函数满足,则(A) (B)(C) (D)(9)若,是第三象限的角,则(A) (B) (C)2 (D)-2(10)设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为(A) (B) (C) (D)(11)已知函数若互不相等,且则的取值范围是(A) (B) (C) (D)(12)已知双曲线的中心为原点,是的焦点,过F的直线与相交于A,B两点,且AB的中点为,则的方程式为(A) (B)(C) (D)第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。二、填空题:本大题共4小题,每小题5分。(13)设为区间上的连续函数,且恒有,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间上的均匀随机数和,由此得到N个点,再数出其中满足的点数,那么由随机模拟方案可得积分的近似值为。(14)正视图为一个三角形的几何体可以是______(写出三种)(15)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为____(16)在△ABC中,D为边BC上一点,BD=DC,ADB=120°,AD=2,若△ADC的面积为,则BAC=_______三,解答题:解答应写出文字说明,正明过程和演算步骤(17)(本小题满分12分)设数列满足求数列的通项公式;令,求数列的前n项和(18)(本小题满分12分)如图,已知四棱锥P-ABCD的底面为等腰梯形,ABCD,ACBD,垂足为H,PH是四棱锥的高,E为AD中点证明:PEBC若APB=ADB=60°,求直线PA与平面PEH所成角的正弦值(19)(本小题12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:是否需要志愿性别男女需要4030不需要160270估计该地区老年人中,需要志愿者提供帮助的老年人的比例;能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:(20)(本小题满分12分)设分别是椭圆的左、右焦点,过斜率为1的直线与相交于两点,且成等差数列。(1)求的离心率;(2)设点满足,求的方程(21)(本小题满分12分)设函数。若,求的单调区间;若当时,求的取值范围请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。(22)(本小题满分10分)选修4-1:几何证明选讲如图,已经圆上的弧,过C点的圆切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD;(Ⅱ)BC2=BF×CD。(23)(本小题满分10分)选修4-4:坐标系与参数方程已知直线C1(t为参数),C2(为参数),(Ⅰ)当=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线。(24)(本小题满分10分)选修4-5,不等式选项设函数(Ⅰ)画出函数的图像(Ⅱ)若不等式≤的解集非空,求a的取值范围。 数学试题参考答案选择题(1)D(2)A(3)A(4)C(5)C(6)B(7)D(8)B(9)A(10)B(11)C(12)B二、填空题(13)(14)三棱锥、三棱柱、圆锥(其他正确答案同样给分)(15)(16)60°三、解答题(17)解:(Ⅰ)由已知,当n≥1时,。而所以数列{}的通项公式为。(Ⅱ)由知①从而②①-②得。即(18)解:以为原点,分别为轴,线段的长为单位长,建立空间直角坐标系如图,则(Ⅰ)设则可得因为所以(Ⅱ)由已知条件可得设为平面的法向量则即因此可以取,由,可得所以直线与平面所成角的正弦值为(19)解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为(2)。由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。(III)由(II)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.(20.)解:(I)由椭圆定义知,又,得的方程为,其中。设,,则A、B两点坐标满足方程组化简的则因为直线AB斜率为1,所以得故所以E的离心率(II)设AB的中点为,由(I)知,。由,得,即得,从而故椭圆E的方程为。(21)解:(1)时,,.当时,;当时,.故在单调减少,在单调增加(II)由(I)知,当且仅当时等号成立.故 ,从而当,即时,,而,于是当时,. 由可得.从而当时, ,故当时,,而,于是当时,. 综合得的取值范围为.(22)解: (I)因为, 所以. 又因为与圆相切于点,故, 所以. (II)因为, 所以∽,故, 即.(23)解:(Ⅰ)当时,的普通方程为,的普通方程为。联立方程组,解得与的交点为(1,0)。(Ⅱ)的普通方程为。A点坐标为,故当变化时,P点轨迹的参数方程为:P点轨迹的普通方程为。故P点轨迹是圆心为,半径为的圆。(24)解:(Ⅰ)由于则函数的图像如图所示。(Ⅱ)由函数与函数的图像可知,当且仅当或时,函数与函数的图像有交点。故不等式的解集非空时,的取值范围为。选择填空解析:一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•海南)已知集合A={x∈R||x|≤2}},,则A∩B=( )A.(0,2) B.[0,2] C.{0,2] D.{0,1,2}【考点】交集及其运算.菁优网版权所有【专题】计算题.【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题. 2.(5分)(2010•海南)已知复数,是z的共轭复数,则=( )A. B. C.1 D.2【考点】复数代数形式的混合运算.菁优网版权所有【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算. 3.(5分)(2010•海南)曲线y=在点(﹣1,﹣1)处的切线方程为( )A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【考点】利用导数研究曲线上某点切线方程.菁优网版权所有【专题】常规题型;计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题. 4.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为( )A. B. C. D.【考点】函数的图象.菁优网版权所有【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题. 5.(5分)(2010•海南)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是( )A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【考点】复合命题的真假;指数函数与对数函数的关系.菁优网版权所有【专题】简易逻辑.【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2xln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.【点评】只有p1与P2都是真命题时,p1∧p2才是真命题.只要p1与p2中至少有一个真命题,p1∨p2就是真命题. 6.(5分)(2010•海南)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为( )A.100 B.200 C.300 D.400【考点】离散型随机变量的期望与方差;二项分布与n次独立重复试验的模型.菁优网版权所有【专题】计算题;应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐