2023年包河区三模 数学试卷及答案

2024-06-06 · U1 上传 · 10页 · 898.7 K

2023年安徽中考模拟卷注意事项:本卷共8大题,23小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题4分,满分40分)1.-4的相反数是()11A.4B.C.D.4442.为了持续调动农民种粮积极性,2022年国家继续提高小麦、稻谷最低收购价,下拨一次性补贴400亿元,其中400亿用科学记数法表示()A.4108B.41011C.41010D.410123.下列运算正确的是()A.a2a2a4B.(x2)3x5C.2x3y5xyD.(3xy)29x2y24.如图所示的几何体的主视图是()A.B.C.D.5.如图,五边形ABCDE中,AE∥CD,∠1=35°,∠2=78°,则∠3的度数是()A.77°B.67°C.33°D.35°1126.化简分式的最后结果是()x21x22x1x1x1x1x24x1A.B.C.1D.x1x1x217.2022年某地区参加养老保险的妇女人数共165万人,比2010年增加120万人,其中参加城镇职工养老保险和城乡居民养老保险的人数分别是2010年的1.5倍和8倍,设2022年参加城镇职工养老保险和城乡居民养老保险的人数分别为x万人和y万人,则()xy165xy1651.5x8y1651.5x8y165A.xyB.C.D.xy120xy165120xy1201651201.581.588.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037.在不超过10的素数2,3,5,7中,随机选取两个不同的数,其和小于10的概率是()1231A.B.C.D.33429.已知:菱形ABCD中,AB3,AC=2,AC与BD交于点O,点E为OB上一点,以AE为对称轴,折叠△ABE,使点B的对应点F恰好落在边CD上,则BE的长为()322333A.B.C.D.4224第5题图第9题图10.已知二次函数yax2bxc(a0)的最大值为abc,若abc1,则下列结论错.误.的是().b24acA.a0,b0B.b24ac0C.b24ac4aD.16a2二、填空题(本大题共4小题,每题5分,共20分)11.二次根式3x有意义,则x的取值范围是.12.如图,AB是⊙O的切线,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=30,∠ABC的度数为.13.在平面直角坐标系xOy中,线段AB两个端点的坐标分别为A(1,2),B(2,2),反k比例函数y(x0)的图象经过点B,过点P(n,4)(n1)作x轴的垂线PQ,与反比例x函数的图象交于点Q.若PQAB,则点P横坐标n的取值范围是.14.如图,共顶点正方形ABCD和AEFG中,AB=13,AE=52,将正方形AEFG绕顶点A逆时针旋转角度(090),即∠BAE=,GF交AD边于H.HF(1)当30时,=;GH(2)连接BE、CE、CF,当△CEF为直角三角形时,BE的长为.第12题图第14题图三、(本大题两小题,每题8分,共16分)115.计算:(2)1(31)0.416.在平面直角坐标系中,△ABC的顶点坐标均为整数.(1)以原点O为旋转中心,将△ABC顺时针旋转90°得到△A1B1C1;(2)将△ABC向下平移,使点A的对应点落在x轴上,得到△A2B2C2;(3)借助网格用无刻度直尺过O作OH⊥B1C1,垂足为H.第16题图四、(本大题两小题,每题8分,共16分)17.观察以下等式:2第1个等式:(1)(41)9,12第2个等式:(1)(91)16,22第3个等式:(1)(161)25,32第4个等式:(1)(251)36,4……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的等式表示),并证明.18.如果不防范,病毒的传播速度往往很快,有一种病毒1人感染后,经过两轮传播,共有361人感染.(1)平均每人每轮感染多少人?(2)第二轮传播后,人们加强防范,使病毒的传播力度减少到原来的a%,这样第三轮传播后感染的人数只是第二轮传播后感染人数的10倍,求a的值.五、(本大题两小题,每题10分,共20分)19.数学兴趣小组为了实地测量两岸互相平行的一段河的宽度,在河的南岸点A处测得河的北岸点B在其北偏东13°方向,然后向西走80米到达C点,测得点B在点C的北偏东53°方向,求河宽(.结果精确到0.1,参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin77°≈0.97,cos77°≈0.22,tan77°≈4.33)第19题图20.如图,Rt△ABC中,∠C=90°,AC=BC=2,以AC为直径的⊙O交AB于D,点E为半圆上一点,∠ACE=30°,连接DE.(1)求证:AD=BD;(2)求DE的长.第20题图六、(本大题12分)21.某企业准备购进药品自动分装机,现有甲乙两款产品供选择,为了解这两款自动分装机的分装效果,对它们各进行50次分装检测,获得了它们的分装质量指标值s,并对样本数据(分装质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该分装质量指标值对应等级如下:分装质量420s425425s430430s435435s440440s445指标值等级次等二等一等二等次等说明:其中一等,二等为分装质量合格(其中等级是一等的为分装质量优秀);次等为分装质量不合格.b.甲款机器样本数据的频数分布统计表如下(不完整):c.乙款机器样本数据的频数分布直方图如下:甲款机器样本数据的频数分布表d.两款机器样本数据的平均数、中位数、众数、方差如下:平均数中位数众数方差甲款机器431.92432.543411.87乙款机器431.92431.543115.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若用甲款机器分装,估计分装质量的合格率为多少?若乙款机器分装5万次,估计质量优秀的有多少万次?(3)根据图表数据,你认为哪款机器分装质量较好,请说明理由.七、(本大题12分)22.为响应政府巩固脱贫成果的号召,某商场与生产水果的脱贫乡镇签订支助协议,每月向该乡镇购进甲、乙两种水果进行销售.根据经验可知:销售甲种水果每吨可获利0.4万元,销售乙种水果获利如下表所示:销售x(吨)34567获利y(万元)0.91.11.31.51.7()分别求销售甲、乙两种水果获利(万元)、(万元)与购进水果数量(吨)的1y1y2x函数关系式;(2)若只允许商场购进并销售一种水果,选择哪种水果获利更高?(3)支助协议中约定,商场每个月向乡镇购进甲、乙两种水果的数量分别为m、n吨,且m,1n满足n20m2,请帮忙商场设计可获得的最大利润的进货方案.2八、(本大题14分)23.已知:如图,等边△ABC中,点D、E分别在AC、BC边上,且AD=CE,AE、BD相交于点O,连接OC.(1)当AD=DC时,∠BOC的度数为.AD1AO(2)当时,①求的值;DC2BO②求证:BO⊥OC.第23题图第23题图2023年安徽中考模拟试卷1参考答案1---5:ACDAB6----10:CDBAD19.解析:∵ABCD是菱形∴AO⊥BDAOAC12∵AB3∴OBAB2OA2(3)2122∴BD2OB22由折叠可知AF=AB=AD∴∠ADC=∠AFD111∵AB∥CD∠BAE=∠FAE∴BAEBAFAFDADCADB222BEABBE332∵∠ABD=∠ABD∴△ABE∽△DBA∴∴∴BEABBD3224故选A.10.【解析】∵二次函数yax2bxc的最大值为abc∴yax2bxc开口向下,对称轴为直线x1,又∵abc1,∴x1时y1及x3时y1.∴a0,b0故A选项正确;∴b24ac0,故B选项正确;4acb2∵顶点纵坐标大于1,∴1变形为b24ac4a故4aC选项错误;∵抛物线与x轴两交点间距离大于4b24acb24acb4c∴()2(xx)24xx(xx)216a2a2a2aa121212故D选项正确。411.x312.12013.n14.(1)31;(2)89或7314.解析:(1)由∠BAE=30°,可得∠GAH=30°∴∠AHG=60°AG∵tanAHGGHAGGFHF∴3∴3∴31GHGHGH(2)当∠CEF=90°时,有A、E、C共线,∴∠EAD=45°∴点F在AD边上作EM⊥AB于M,∴AM=ME=5,∴BM=8,∴BE=825289;当∠EFC=90°时,连接AC、AF,可知∠CFG=180°,由AB=13,AG=52,可知AC132,AG52,由勾股定理可得CG122,CF72∵∠BAC=∠EAF=45°∴∠BAE=∠CAF,ABAE1ACCF由正方形可知∴△BAE∽△CAF2∴BE7ACAF2ABBE1115.原式=1…………6分22=1…………8分16.(1)如图;…………3分(2)如图;…………6分(3)如图.…………8分217.解:(1)(1)(361)49…………2分52(2)(1)[(n1)21](n2)2…………4分n2n2左边=(1)[(n1)21](n22n)(n2)2=右边.…………8分nn18.解:(1)设平均每人每轮感染x人,则…………1分(1x)2361…………3分解得(舍去)x118,x220平均每人每轮感染18人.…………5分(2)依题意得:36136118a%=3610解得a=50答:a的值为50.…………8分19.解:过B作BD⊥CA于D,设AD=x米,则BD在Rt△ABD中,∵tanBADADBD即tan77∴BD=4.33x…………4分x在Rt△CBD中,BD4.33x∵tanBCD即tan37CD80x∴0.75(80x)4.33x解得x≈16.76…………8分∴BD=4.33x=4.33×16.76≈72.6(米)答:河宽大约为72.6米.…………10分20.解:(1)∵AC为⊙O的直径,∴∠ADC=90°∵AC=BC∴AD=BD…………4分(2)连接CD,过C作CF⊥DE于F∵AC=BC∠ACB=90°∴∠CAB=∠ACD=45°∴∠CED=∠CAB=45°∵∠ACE=30°∴∠DCE=30°+45°=75°∵CF⊥DE∴∠ECF=45°∠FCD=30°∵AC=2∴CD=2…………6分26∵∠FCD=30°CF⊥DE∴DF=CF=2262662∴EF=CF=∴DE=DF+EF=+=…………10分222221.解:(1)100.64;…………4分35(2)(10+32+6)÷50=96%53.5(万次);…………8分50(3)只要理由合理均可.…………12分解:()由题意得,22.1y10.4x在直角坐标系中描出以(,)坐标的对应点,易得的图象成一条直线,设xyy2y2kxb3kb0.9k0.2则解得4kb1.1b0.3∴分y20.2x0.3…………4()当,则,解得2y1y20.4x0.2x0.3x1.5∴当进货数量小于1.5吨时,销售乙种水果获利大;当进货数量等于1.5吨时,销售两种水果获利一样;当进货数量大于1.5吨时,销售甲种水果获利大.…………8分(3)当商场向乡镇购进甲、乙两种水果的数量分别为m、n吨时,获得利润1w0.4m0.2n0.30.4m0.2(20m2)0.32即w0.1m20.4m4.30.1(m2)24.7当m2时,n18当商场向乡镇购进甲、乙两种水果的数量分

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐