2024届高中数学高三一检参考答案一、选择题123456789101112CABABCBDBCDBDBCDACD1.C【解析】A{2,1,0,1,2,3},B1,1,所以AIB{-1,},故选C.13i2.A【解析】z2i,z2i在复平面内对应的点为2,-1在第四象限,故选1iA.3.B【解析】a1且b1,则ab2;反之,a3,b0,满足ab2,但不能推出a1且b1,所以a1且b1是ab2的充分不必要条件,故选B.uuuruuuruuuruuur4.A【解析】AD在AB方向上的投影数量为2,所以ABAD22=4,故选A.lnx1lnxlneln5.B【解析】设fx,f/x,∴fx在e,单减,所以>,xx2eeπ即e>∴c>b,又a3ec,∴acb,选B1234539404848506.C【解析】∵x3,y45,55∴a453336,所以A正确,因为y与x成正相关,所以B正确,代入x6得1222y54,所以D正确,因为方差s239454045504520.8,5所以C错误,故选C.7.B【解析】四边形ADFE是菱形12345,由抛物线的性质可知ADAF242p81251+2+5180160AB选Bsin213{#{QQABAYQQogggABBAAAhCUwEiCAIQkAGCAAoOwFAAMAABgQNABAA=}#}SS【解析】由=1知,=,由=2,得,正确;8.Da1a12a2an0a22AS11S21SS1由=n知,=n,an0Sn1Sn1an1Sn1Sn1Sn111所以-=-,所以递减,有最大值,无最小值,正确;an+1an0anBSn+11Sn1S=n,则=,故正确;an1Sna1Lan2n1n1CSn1n1S+nSSS-n1SnS-=n1-n=nn1n1n,不存在*,n1an+1nan0n0NSn+11Sn1Sn+11Sn1使nan1a,故D错误;故选D.0n00n0139.BCD【解析】MN的方程为xy3,O到MN距离为5223MN与圆O相交,弦长为252故A错误B正确2过N作圆O的切线,位于第二象限的切点为A52sinANOANO45MNA90故C正确32若MPN90,则P在以MN为直径的圆x2y23x3y0上,圆x2y23x3y0与圆x2y25相交,故存在P使得MPN90故D正确rrrr3110.BD【解析】若ab,则absincossin()0226{#{QQABAYQQogggABBAAAhCUwEiCAIQkAGCAAoOwFAAMAABgQNABAA=}#}5Q0,+得=A错误66rr11若ab,则sin()36357sin(2)sin[2()+]cos2()12sin2()B正确662669rr33若a//b,则sincossin2422Q0,20,2得2,,C错误3363rr131若ab则sin2+cos2+得cos2442242Q0,20,22,得,D正确333311.BCD【解析】若为矩形,还可以DHAE,故A错误,若为菱形,则邻边相等,对角线互相垂直,可得B正确,EH最小为2,最大为5,所以C正确,综合矩形和菱形条件得D正确lnx1',1在1,和,12.ACD【解析】fx2,∴fx在0Z,11],画出xlnxee草图即可得ACD正确二、填空题421【解析】常数项为4213.60C62x60x-211【解析】,,,所以切线方程14.x2y10fx2f1f101xx21为yx1.23915.或4422【解析】g(x)sin(x)由g(x)为偶函数,得g(0)sin13323k3k得(kZ)3224{#{QQABAYQQogggABBAAAhCUwEiCAIQkAGCAAoOwFAAMAABgQNABAA=}#}T539Q03,验证满足条件2624439或44616.yx210310【解析】在RtVOQF中sinQFOcosQFO1110110310c在RtPFF中PFFFcosQFO,121121510cPFFFsinQFO21215210cc10b62aPFPF125a2a26故双曲线的渐近线方程为yx2三、解答题17.(1)n2时,Sn1an,Snan1,两式相减得,an12an,a2a11,所以1,n1ann22,n2()时,,又,所以n12n2Snan1S1a2Snan12.A1cosAbcb18.解:(1)Qcos2cosA222ccb2c2a2b得b2+a2c2ACB902bcc{#{QQABAYQQogggABBAAAhCUwEiCAIQkAGCAAoOwFAAMAABgQNABAA=}#}13(2)在Rt△ABC中CAB,acbc622延长DC交AB于E,延长BC交AD于F1111CFBCc,CEABc,CD2CEc242213CF13在Rt△ACF中AFCF2+AC2c,sinDAC4AF13CDAC39在△ACD中得sinADCsinDACsinADC2619.解析:连接AM,PM,∵△PAB与△PAC均为等边三角形,∴ACAB,PCPB∴AMBC,PMBC∴BC平面PAM∴PABC得证;2(2)设AB=a,由(1)可知:AMPMa,所以PM平面ABC2如图建立空间直角坐标系,则:222uuur22Aa,0,0B0,a,0,P0,0,a,APa,0,a2222222∴Na,0,a44uuur22uur22设平面的一个法向量为:ABa,a,0BP0,a,a,ABP2222urmx,y,z,则:{#{QQABAYQQogggABBAAAhCUwEiCAIQkAGCAAoOwFAAMAABgQNABAA=}#}uruuur22mABaxay022ur,令y1得x1,z1,∴m1,1,1uruur22mBpayaz022r同理可得:平面NBP的一个法向量为:n1,1,1,urrmn1111则cosurrmn3331又二面角A-PB-N的平面角为钝角,所以二面角A-PB-N的余弦值为3.431433212120.解析:(1)P55455453125(1)X0,1000,3000,600012146PX05125125428PX10005525433327PX300055451254332212PX600055453125X0100030006000P468271212525125125所以EX15442b222(xa)y203解()设0a21.:1M(x0,y0)kMAkMB2222x0ax0a4b23Q2c2a24,b23a24x2y2曲线C的方程为1;433(2)设PB,AQ的斜率分别为k,k易知kkkkk2k341324434的方程为,的方程为ATyk4(x2)BTyk3(x2){#{QQABAYQQogggABBAAAhCUwEiCAIQkAGCAAoOwFAAMAABgQNABAA=}#}2xT32yk4(x2)8k6422xQ23x4y124k4322yk3(x2)8k632k63422xP223x4y124k3316k432223AT3222由xPxQ得k4(4k43)(,1).8AQxQ29322.(1)由题意可知g(x)f(x)sinxsin2x2sinx,x0,2则g(x)2cos2x2cosx4cos2x2cosx22(2cosx1)(cosx1),1令g(x)0,又x0,,则cosx,解得x0,22333则g(x)在0,单调递增,在,单调递减.又g(0)0,g(),g()2,33232233综上所述:函数g(x)f(x)sinx值域为0,.2f(x)(2)由3cosx,x0,化简可得:sinxsinax3xcosx0,x2令h(x)sinxsinax3xcosx,x0,2则h(x)acosax2cosx3xsinx,x0,,h(0)a2.2a323①a1,h()sinsincos(2)0(舍去);4444424②若a2,h(x)sinxsin2x3xcosx,h(x)2cos2x2cosx3xsinxh(x)4sin2x5sinx3xcosx8sinxcosx5sinx3xcosx5sinx5sinxcosx3xcosx3sinxcosx5sinx(1cosx)3cosx(xsinx){#{QQABAYQQogggABBAAAhCUwEiCAIQkAGCAAoOwFAAMAABgQNABAA=}#}易证x0,时,xsinx,则h(x)0,可得h(x)在0,单调递增22又h(0)0,则h(x)0,h(x)在0,单调递增2同理h(0)0,则h(x)0,x0,,符合题意.2③若,令,,a3x00,ax0x0x0(a1)sinax0sin(x0)a12(舍去)h(x0)sinx0sin(x0)3x0cosx03x0cosx00综上所述:a的取值集合为2.{#{QQABAYQQogggABBAAAhCUwEiCAIQkAGCAAoOwFAAMAABgQNABAA=}#}
江西省景德镇市2023-2024学年高三上学期第一次质量检测 数学答案
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片