2020年辽宁省鞍山市中考数学试题(解析)

2023-10-31 · U1 上传 · 25页 · 386 K

2020年辽宁省鞍山市中考数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的绝对值是( )A.﹣2020 B.﹣ C. D.2020【分析】﹣的绝对值等于它的相反数,据此求解即可.【解答】解:|﹣|=.故选:C.2.(3分)如图,该几何体是由5个相同的小正方体搭成的,则这个几何体的主视图是( )A. B. C. D.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.【解答】解:从正面看,底层是三个小正方形,上层左边是一个小正方形.故选:A.3.(3分)下列计算结果正确的是( )A.a2+a2=a4 B.(a3)2=a5 C.(a+1)2=a2+1 D.a•a=a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a2,不符合题意;B、原式=a6,不符合题意;C、原式=a2+2a+1,不符合题意;D、原式=a2,符合题意.故选:D.4.(3分)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是( )A.26.5和28 B.27和28 C.1.5和3 D.2和3【分析】根据众数和中位数的定义,结合表格和选项选出正确答案即可.【解答】解:共7天,中位数应该是排序后的第4天,则中位数为:27℃,28℃的有3天,最多,所以众数为:28℃.故选:B.5.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54°,则∠1的度数为( )A.36° B.54° C.72° D.73°【分析】根据平行线的性质得出∠2的度数,再由作图可知AC=AB,根据等边对等角得出∠ACB,最后用180°减去∠2与∠ACB即可得到结果.【解答】解:∵l1∥l2,∠ABC=54°,∴∠2=∠ABC=54°,∵以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,∴AC=AB,∴∠ACB=∠ABC=54°,∵∠1+∠ACB+∠2=180°,∴∠1=72°.故选:C.6.(3分)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是( )A. B. C. D.【分析】设甲每小时加工x个零件,则乙每小时加工(x+6)个,根据甲加工240个零件所用的时间与乙加工300个零件所用的时间相等,列方程.【解答】解:设甲每小时加工x个零件,根据题意可得:=.故选:B.7.(3分)如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为( )A.30° B.25° C.15° D.10°【分析】连接OB和OC,证明△OBC为等边三角形,得到∠BOC的度数,再利用圆周角定理得出∠A.【解答】解:连接OB和OC,∵圆O半径为2,BC=2,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=30°,故选:A.8.(3分)如图,在平面直角坐标系中,点A1,A2,A3,A4,…在x轴正半轴上,点B1,B2,B3,…在直线y=x(x≥0)上,若A1(1,0),且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,则线段B2019B2020的长度为( )A.22021 B.22020 C.22019 D.22018【分析】设△BnAnAn+1的边长为an,根据直线的解析式能的得出∠AnOBn=30°,再结合等边三角形的性质及外角的性质即可得出∠OBnAn=30°,∠OBnAn+1=90°,从而得出BnBn+1=an,由点A1的坐标为(1,0),得到a1=1,a2=1+1=2,a3=1+a1+a2=4,a4=1+a1+a2+a3=8,…,an=2n﹣1.即可求得B2019B2020=a2019=×22018=22018.【解答】解:设△BnAnAn+1的边长为an,∵点B1,B2,B3,…是直线y=x上的第一象限内的点,∴∠AnOBn=30°,又∵△BnAnAn+1为等边三角形,∴∠BnAnAn+1=60°,∴∠OBnAn=30°,∠OBnAn+1=90°,∴BnBn+1=OBn=an,∵点A1的坐标为(1,0),∴a1=1,a2=1+1=2,a3=1+a1+a2=4,a4=1+a1+a2+a3=8,…,∴an=2n﹣1.∴B2019B2020=a2019=×22018=22018,故选:D.二、填空题(本题共8个小题,每小题3分,共24分)9.(3分)据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为 8.81×106 .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8810000=8.81×106,故答案为:8.81×106.10.(3分)分解因式:a3﹣2a2b+ab2= a(a﹣b)2 .【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.11.(3分)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为 24个 .【分析】估计利用频率估计概率可估计摸到白球的概率为0.2,然后根据概率公式构建方程求解即可.【解答】解:设白球有x个,根据题意得:=0.2,解得:x=24,经检验:x=24是分式方程的解,即白球有24个,故答案为24个12.(3分)如果关于x的一元二次方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是 .【分析】利用判别式的意义得到△=(﹣3)2﹣4k=0,然后解关于k的方程即可.【解答】解:根据题意得△=(﹣3)2﹣4k=0,解得k=.故答案为.13.(3分)不等式组的解集为 1<x≤2 .【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不能等式2x﹣1≤3,得:x≤2,解不等式2﹣x<1,得:x>1,则不等式组的解集为1<x≤2,故答案为:1<x≤2.14.(3分)如图,在平行四边形ABCD中,点E是CD的中点,AE,BC的延长线交于点F.若△ECF的面积为1,则四边形ABCE的面积为 3 .【分析】根据▱ABCD的对边互相平行的性质及中位线的性质知EC是△ABF的中位线;然后根证明△ABF∽△CEF,再由相似三角形的面积比是相似比的平方及△ECF的面积为1求得△ABF的面积;最后根据图示求得S四边形ABCE=S△ABF﹣S△CEF=3.【解答】解:∵在▱ABCD中,AB∥CD,点E是CD中点,∴EC是△ABF的中位线;∵∠B=∠DCF,∠F=∠F(公共角),∴△ABF∽△ECF,∵,∴S△ABF:S△CEF=1:4;又∵△ECF的面积为1,∴S△ABF=4,∴S四边形ABCE=S△ABF﹣S△CEF=3.故答案为:3.15.(3分)如图,在平面直角坐标系中,已知A(3,6),B(﹣2,2),在x轴上取两点C,D(点C在点D左侧),且始终保持CD=1,线段CD在x轴上平移,当AD+BC的值最小时,点C的坐标为 (﹣1,0) .【分析】把A(3,6)向左平移1得A′(2,6),作点B关于x轴的对称点B′,连接B′A′交x轴于C,在x轴上取点D(点C在点D左侧),使CD=1,连接AD,则AD+BC的值最小,求出直线B′A′的解析式为y=2x+2,解方程即可得到结论.【解答】解:把A(3,6)向左平移1得A′(2,6),作点B关于x轴的对称点B′,连接B′A′交x轴于C,在x轴上取点D(点C在点D左侧),使CD=1,连接AD,则AD+BC的值最小,∵B(﹣2,2),∴B′(﹣2,﹣2),设直线B′A′的解析式为y=kx+b,∴,解得:,∴直线B′A′的解析式为y=2x+2,当y=0时,x=﹣1,∴C(﹣1,0),故答案为:(﹣1,0).16.(3分)如图,在菱形ABCD中,∠ADC=60°,点E,F分别在AD,CD上,且AE=DF,AF与CE相交于点G,BG与AC相交于点H.下列结论:①△ACF≌△CDE;②CG2=GH•BG;③若DF=2CF,则CE=7GF;④S四边形ABCG=BG2.其中正确的结论有 ①③④ .(只填序号即可)【分析】根据等边三角形的性质证明△ACF≌△CDE,可判断①;过点F作FP∥AD,交CE于P点,利用平行线分线段成比例可判断③;过点B作BM⊥AG于M,BN⊥GC于N,得到点A、B、C、G四点共圆,从而证明△ABM≌△CBN,得到S四边形ABCG=S四边形BMGN,再利用S四边形BMGN=2S△BMG求出结果即可判断④;证明△BCH∽△BGC,得到,推出GH•BG=BG2﹣BC2,得出若等式成立,则∠BCG=90°,根据题意此条件未必成立可判断②.【解答】解:∵ABCD为菱形,∴AD=CD,∵AE=DF,∴DE=CF,∵∠ADC=60°,∴△ACD为等边三角形,∴∠D=∠ACD=60°,AC=CD,∴△ACF≌△CDE(SAS),故①正确;过点F作FP∥AD,交CE于P点.∵DF=2CF,∴FP:DE=CF:CD=1:3,∵DE=CF,AD=CD,∴AE=2DE,∴FP:AE=1:6=FG:AG,∴AG=6FG,∴CE=AF=7GF,故③正确;过点B作BM⊥AG于M,BN⊥GC于N,∵∠AGE=∠ACG+∠CAF=∠ACG+∠GCF=60°=∠ABC,即∠AGC+∠ABC=180°,∴点A、B、C、G四点共圆,∴∠AGB=∠ACB=60°,∠CGB=∠CAB=60°,∴∠AGB=∠CGB=60°,∴BM=BN,又AB=BC,∴△ABM≌△CBN(HL),∴S四边形ABCG=S四边形BMGN,∵∠BGM=60°,∴GM=BG,BM=BG,∴S四边形BMGN=2S△BMG=2××=BG2,故④正确;∵∠CGB=∠ACB=60°,∠CBG=∠HBC,∴△BCH∽△BGC,∴,则BG•BH=BC2,则BG•(BG﹣GH)=BC2,则BG2﹣BG•GH=BC2,则GH•BG=BG2﹣BC2,当∠BCG=90°时,BG2﹣BC2=CG2,此时GH•BG=CG2,而题中∠BCG未必等于90°,故②不成立,故正确的结论有①③④,故答案为:①③④.三、解答题(每小题8分,共16分)17.(8分)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.【分析】先根据分式混合运算的法则把原式进行化简,再将x的值代入进行计算即可【解答】解:(x﹣1﹣)÷,=[﹣],=,=,当x=﹣2时,原式====1﹣2.18.(8分)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.【分析】先证明△AEC≌△AFC,根据全等三角形的性质得出∠CAE=∠CAF,利用角平分线的性质解答即可.【解答】证明:连接AC,在△AEC与△AFC中,∴△AEC≌△AFC(SSS),∴∠CAE=∠CAF,∵∠B=∠D=90°,∴CB=CD.四、解答题(每小题10分,共20分)19.(10分)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐