2020年湖南省湘西州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.请将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)1.(4分)下列各数中,比﹣2小的数是( )A.0 B.﹣1 C.﹣3 D.32.(4分)2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是( )A.0.927×105 B.9.27×104 C.92.7×103 D.927×1023.(4分)下列运算正确的是( )A.=﹣2 B.(x﹣y)2=x2﹣y2 C.+= D.(﹣3a)2=9a24.(4分)如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是( )A. B. C. D.5.(4分)从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为( )A. B. C. D.6.(4分)已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是( )A.锐角三角形 B.钝角三角形 C.等腰三角形 D.直角三角形7.(4分)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),下列说法正确的是( )A.正比例函数y1的解析式是y1=2x B.两个函数图象的另一交点坐标为(4,﹣2) C.正比例函数y1与反比例函数y2都随x的增大而增大 D.当x<﹣2或0<x<2时,y2<y18.(4分)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是( )A.△BPA为等腰三角形 B.AB与PD相互垂直平分 C.点A、B都在以PO为直径的圆上 D.PC为△BPA的边AB上的中线9.(4分)如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于( )A.acosx+bsinx B.acosx+bcosx C.asinx+bcosx D.asinx+bsinx10.(4分)已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是( )A.①③ B.②⑤ C.③④ D.④⑤二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)11.(4分)﹣的绝对值是 .12.(4分)分解因式:2x2﹣2= .13.(4分)若一个多边形的内角和是外角和的两倍,则该多边形的边数是 .14.(4分)不等式组的解集为 .15.(4分)如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC= 度.16.(4分)从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是甲≈7.5,乙≈7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是 .17.(4分)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE沿x轴向右平移,当矩形CODE与△ABO重叠部分的面积为6时,则矩形CODE向右平移的距离为 .18.(4分)观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…An中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与AnM相交于O.也会有类似的结论,你的结论是 .三、解答题(本大題关8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)19.(8分)计算:2cos45°+(π﹣2020)0+|2﹣|.20.(8分)化简:(﹣a﹣1)÷.21.(8分)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.22.(10分)为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级参赛学生成绩频数分布直方图(数据分成五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)如图所示b.七年级参赛学生成绩在70≤x<80这一组的具体得分是:7071737576767677777879c.七年级参赛学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七76.9m80d.七年级参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:(1)在这次测试中,七年级在75分以上(含75分)的有 人;(2)表中m的值为 ;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第 名;(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.23.(10分)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若CA=6,CE=3.6,求⊙O的半径OA的长.25.(12分)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是 ;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.26.(12分)已知直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E时,求k,b,c的值及抛物线顶点E的坐标;(2)在(1)的条件下,设该抛物线与y轴的交点为C,若点Q在抛物线上,且点Q的横坐标为b,当S△EQM=S△ACE时,求m的值;(3)点D在抛物线上,且点D的横坐标为b+,当AM+2DM的最小值为时,求b的值.2020年湖南省湘西州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.请将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)1.【分析】利用数轴表示这些数,从而比较大小.【解答】解:将这些数在数轴上表示出来:∴﹣3<﹣2<﹣1<0<3,∴比﹣2小的数是﹣3,故选:C.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为正整数.【解答】解:92700=9.27×104.故选:B.【点评】此题考查科学记数法表示较大的数的方法,把一个大于10的数记成a×10n的形式,其中1≤|a|<10,n是正整数,这种记数法叫做科学记数法.3.【分析】根据二次根式的加减法、幂的乘方与积的乘方、完全平方公式、二次根式的性质与化简,进行计算即可判断.【解答】解:A.=2,所以A选项错误;B.(x﹣y)2=x2﹣2xy+y2,所以B选项错误;C.+≠,所以C选项错误;D.(﹣3a)2=9a2.所以D选项正确.故选:D.【点评】本题考查了二次根式的加减法、幂的乘方与积的乘方、完全平方公式、二次根式的性质与化简,解决本题的关键是综合运用以上知识.4.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看有两层,底层右边是一个小正方形,上层是两个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.【分析】列举出所有可能出现的结果情况,进而求出能构成三角形的概率.【解答】解:从长度为1cm、3cm、5cm、6cm四条线段中随机取出三条,共有以下4种结果(不分先后):1cm、3cm、5cm,1cm、3cm、6cm,3cm、5cm、6cm,1cm、5cm、6cm,其中,能构成三角形的只有1种,∴P(构成三角形)=.故选:A.【点评】本题考查随机事件发生的概率,列举出所有可能出现的结果情况,是正确解答的关键.6.【分析】依据已知条件即可得到∠ODP=∠OGP,即可得到OD=OG,进而得出△ODG是等腰三角形.【解答】解:如图所示,∵OM平分∠AOB,∴∠AOC=∠BOC,由题意可得,DG垂直平分OC,∴∠OPD=∠OPG=90°,∴∠ODP=∠OGP,∴OD=OG,∴△ODG是等腰三角形,故选:C.【点评】本题主要考查了基本作图以及等腰三角形的判定,如果一个三角形有两个角相等,那么这两个角所对的边也相等.7.【分析】由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.【解答】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),∴正比例函数y1=﹣2x,反比例函数y2=﹣,∴两个函数图象的另一个交点为(2,﹣4),∴A,B选项说法错误;∵正比例函数y1=﹣2x中,y随x的增大而减小,反比例函数y2=﹣中,在每个象限内y随x的增大而增大,∴C选项说法错误;∵当x<﹣2或0<x<2时,y2<y1,∴选项D说法正确.故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.8.【分析】根据切线的性质即可求出答案.【解答】解:(A)∵PA、PB为圆O的切线,∴PA=PB,∴△BPA
2020年湖南省湘西州中考数学试卷
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片