精品解析:四川省乐山市2020年初中学业水平考试数学试题(解析版)

2023-10-31 · U1 上传 · 28页 · 2.5 M

乐山市2020年初中学业水平考试数学试题卷分第一部分(选择题)和第二部分(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第Ⅰ卷(选择题 共30分)注意事项:1.选择题必须使用2B铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共10个小题,每小题3分,共30分.1.的倒数是()A. B. C. D.【答案】A【解析】【分析】根据乘积是1的两个数叫做互为倒数,求解.【详解】解:∵∴的倒数是2故选:A.【点睛】本题考查倒数的概念,掌握概念正确计算是解题关键.2.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A. B. C. D.【答案】A【解析】【分析】先求出“良”和“优”的人数所占的百分比,然后乘以2000即可.【详解】解:“良”和“优”的人数所占的百分比:×100%=55%,∴在2000人中成绩为“良”和“优”的总人数估计为2000×55%=1100(人),故选:A.【点睛】本题考查了用样本估计总体,求出“良”和“优”的人数所占的百分比是解题关键.3.如图,是直线上一点,,射线平分,.则()A. B. C. D.【答案】B【解析】【分析】先根据射线平分,得出∠CEB=∠BEF=70°,再根据,可得∠GEB=∠GEF-∠BEF即可得出答案.【详解】∵,∴∠CEF=140°,∵射线平分,∴∠CEB=∠BEF=70°,∵,∴∠GEB=∠GEF-∠BEF=90°-70°=20°,故选:B.【点睛】本题考查了角平分线的性质,补角,掌握知识点灵活运用是解题关键.4.数轴上点表示的数是,将点在数轴上平移个单位长度得到点.则点表示的数是()A. B.或C. D.或【答案】D【解析】【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B表示的数是多少即可.【详解】解:点A表示的数是−3,左移7个单位,得−3−7=−10,点A表示的数是−3,右移7个单位,得−3+7=4,故选:D.【点睛】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:数轴上的点右移加,左移减.5.如图,在菱形中,,,是对角线的中点,过点作于点,连结.则四边形的周长为()A. B. C. D.【答案】B【解析】【分析】由已知及菱形的性质求得∠ABD=∠CDB=30º,AO⊥BD,利用含30º的直角三角形边的关系分别求得AO、DO、OE、DE,进而求得四边形的周长.【详解】∵四边形ABCD是菱形,是对角线的中点,∴AO⊥BD,AD=AB=4,AB∥DC∵∠BAD=120º,∴∠ABD=∠ADB=∠CDB=30º,∵OE⊥DC,∴在RtΔAOD中,AD=4,AO==2,DO=,在RtΔDEO中,OE=,DE=,∴四边形的周长为AO+OE+DE+AD=2++3+4=9+,故选:B.【点睛】本题考查菱形的性质、含30º的直角三角形、勾股定理,熟练掌握菱形的性质及含30º的直角三角形边的关系是解答的关键.6.直线在平面直角坐标系中的位置如图所示,则不等式的解集是()A. B. C. D.【答案】C【解析】【分析】先根据图像求出直线解析式,然后根据图像可得出解集.【详解】解:根据图像得出直线经过(0,1),(2,0)两点,将这两点代入得,解得,∴直线解析式为:,将y=2代入得,解得x=-2,∴不等式的解集是,故选:C.【点睛】本题考查了一次函数的图像和用待定系数法求解析式,解不等式,求出直线解析式是解题关键.7.观察下列各方格图中阴影部分所示的图形(每一小方格的边长为),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A. B. C. D.【答案】A【解析】【分析】先根据拼接前后图形的面积不变,求出拼成正方形的边长,再以此进行裁剪即可得.【详解】由方格的特点可知,选项A阴影部分的面积为6,选项B、C、D阴影部分的面积均为5如果能拼成正方形,那么选项A拼接成的正方形的边长为,选项B、C、D拼接成的正方形的边长为观察图形可知,选项B、C、D阴影部分沿方格边线或对角线剪开均可得到如图1所示的5个图形,由此可拼接成如图2所示的边长为的正方形而根据正方形的性质、勾股定理可知,选项A阴影部分沿着方格边线或对角线剪开不能得到边长为的正方形故选:A.【点睛】本题考查了学生的动手操作能力、正方形的面积和正方形的有关画图、勾股定理,以拼接前后图形的面积不变为着手点是解题关键.8.已知,.若,则的值为()A. B. C. D.【答案】C【解析】【分析】逆用同底数幂的乘除法及幂的乘方法则.由即可解答.【详解】∵,依题意得:,.∴,∴,故选:C.【点睛】此题主要考查了同底数幂的乘除法,以及幂的乘方运算,关键是会逆用同底数幂的乘除法进行变形.9.在中,已知,,.如图所示,将绕点按逆时针方向旋转后得到.则图中阴影部分面积()A. B. C. D.【答案】B【解析】【分析】先求出AC、AB,在根据求解即可.【详解】解:在Rt△ABC中,∵,∴AC=2BC=2,∴,∵绕点按逆时针方向旋转后得到,∴∴∴.故选:B【点睛】本题考查了不规则图形面积的求法,熟记扇形面积公式,根据求解是解题关键.10.如图,在平面直角坐标系中,直线与双曲线交于、两点,是以点为圆心,半径长的圆上一动点,连结,为的中点.若线段长度的最大值为,则的值为()A. B. C. D.【答案】A【解析】【分析】连接BP,证得OQ是△ABP的中位线,当P、C、B三点共线时PB长度最大,PB=2OQ=4,设B点的坐标为(x,-x),根据点,可利用勾股定理求出B点坐标,代入反比例函数关系式即可求出k的值.【详解】解:连接BP,∵直线与双曲线的图形均关于直线y=x对称,∴OA=OB,∵点Q是AP的中点,点O是AB的中点∴OQ是△ABP的中位线,当OQ的长度最大时,即PB的长度最大,∵PB≤PC+BC,当三点共线时PB长度最大,∴当P、C、B三点共线时PB=2OQ=4,∵PC=1,∴BC=3,设B点的坐标为(x,-x),则,解得(舍去)故B点坐标为,代入中可得:,故答案为:A.【点睛】本题考查三角形中位线的应用和正比例函数、反比例函数的性质,结合题意作出辅助线是解题的关键.第Ⅱ卷(非选择题 共120分)注意事项1.考生使用0.5mm黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.4.本部分共16个小题,共120分.二、填空题:本大题共6个小题,每小题3分,共18分.11.用“”或“”符号填空:______.【答案】【解析】【分析】两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵|-7|=7,|-9|=9,7<9,∴-7>-9,故答案为:>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:两个负数,绝对值大的其值反而小.12.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是______.【答案】39【解析】【分析】将数据从小到大进行排列即可得出中位数.【详解】解:将数据从小到大进行排列为:37,37,38,39,40,40,40∴中位数为39,故答案为:39.【点睛】本题考查了求中位数,掌握计算方法是解题关键.13.如图是某商场营业大厅自动扶梯示意图.自动扶梯的倾斜角为,在自动扶梯下方地面处测得扶梯顶端的仰角为,、之间的距离为4.则自动扶梯的垂直高度=_________.(结果保留根号)【答案】【解析】【分析】先推出∠ABC=∠BAC,得BC=AC=4,然后利用三角函数即可得出答案.【详解】∵∠BAC+∠ABC=∠BCD=60°,∠BAC=30°,∴∠ABC=30°,∴∠ABC=∠BAC,∴BC=AC=4,在Rt△BCD中,BD=BCsin60°=4×=,故答案为:.【点睛】本题考查了等腰三角形的性质,三角函数,得出BC=AB=4是解题关键.14.已知,且.则的值是_________.【答案】4或-1【解析】【分析】将已知等式两边同除以进行变形,再利用换元法和因式分解法解一元二次方程即可得.【详解】将两边同除以得:令则因式分解得:解得或即的值是4或故答案为:4或.【点睛】本题考查了利用换元法和因式分解法解一元二次方程,将已知等式进行正确变形是解题关键.15.把两个含角的直角三角板按如图所示拼接在一起,点为的中点,连结交于点.则=_________.【答案】【解析】【分析】连接CE,设CD=2x,利用两个直角三角形的性质求得AD=4x,AC=2x,BC=x,AB=3,再由已知证得CE∥AB,则有,由角平分线的性质得,进而求得的值.【详解】连接CE,设CD=2x,在RtΔACD和RtΔABC中,∠BAC=∠CAD=30º,∴∠D=60º,AD=4x,AC=,BC==x,AB=x,∵点E为AD的中点,∴CE=AE=DE==2x,∴ΔCED为等边三角形,∴∠CED=60º,∵∠BAD=∠BAE+∠CAD=30º+30º=60º,∴∠CED=∠BAD,∴AB∥CE,∴,在ΔBAE中,∵∠BAE=∠CAD=30º∴AF平分∠BAE,∴,∴,∴,故答案为:.【点睛】本题考查了含30º的直角三角形、等边三角形的判定与性质、平行线分线段成比例、角平分线的性质等知识,是一道综合性很强的填空题,解答的关键是认真审题,找到相关知识的联系,确定解题思路,进而探究、推理并计算.16.我们用符号表示不大于的最大整数.例如:,.那么:(1)当时,的取值范围是______;(2)当时,函数的图象始终在函数的图象下方.则实数的范围是______.【答案】(1).(2).或【解析】【分析】(1)首先利用的整数定义根据不等式确定其整数取值范围,继而利用取整函数定义精确求解x取值范围.(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数.【详解】(1)因为表示整数,故当时,的可能取值为0,1,2.当取0时,;当取1时,;当=2时,.故综上当时,x的取值范围为:.(2)令,,,由题意可知:,.①当时,=,,在该区间函数单调递增,故当时,,得.②当时,=0,不符合题意.③当时,=1,,在该区间内函数单调递减,故当取值趋近于2时,,得,当时,,因为,故,符合题意.故综上:或.【点睛】本题考查函数的新定义取整函数,需要有较强的题意理解能力,分类讨论方法在此类型题目极为常见,根据不同区间函数单调性求解参数为常规题型,需要利用转化思想将非常规题型转化为常见题型.三、本大题共3个小题,每小题9分,共27分.17.计算:.【答案】2【解析】【分析】根据绝对值,特殊三角函数值,零指数幂对原式进行化简计算即可.【详解】解:原式==.【点睛】本题考查了绝对值,特殊三角函数值,零指数幂,掌握运算法则是解题关键.18.解二元一次方程组:【答案】【解析】【分析】方程组利用加减消元法,由②-①即可解答;【详解】解:,②-①,得,解得:,把代入①,得;∴原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图,是矩形的边上的一点,于点,,,.求的长度. 【答案】.【解析】【分析】先根据矩形的性质、勾股定理求出,再根据相似三角形的判定与性质可得,由此即可得出答案.【详解】∵四边形是矩形,∴,∵∴∵,,∴在和中,∴∴,即解得即的长度为.【点睛】本题考查了矩形性质、勾股定理、相似三角形的判定与性质等知识点,掌握相似

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐