精品解析:内蒙古通辽市2020年中考数学试题(解析版)

2023-10-31 · U1 上传 · 25页 · 1.3 M

内蒙古通辽市2020年中考数学试题注意事项: 1.本试卷共6页,26小题,满分为120分,考试时间为120分钟. 2.根据网上阅卷需要,本试卷中的所有试题均按要求在答题卡上作答,答在本试卷上的答案无效. 3.考试结束后,将本试卷与答题卡分别封装一并上交.一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.2020年我市初三毕业生超过30000人,将30000用科学记数法表示正确的是( )A. B. C. D.3万【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将30000用科学记数法表示为3×104. 故选:B.【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列说法不正确的是( )A.是2个数a的和 B.是2和数a的积C.是单项式 D.是偶数【答案】D【解析】【分析】根据2a意义,分别判断各项即可.【详解】解:A、=a+a,是2个数a的和,故选项正确;B、=2×a,是2和数a的积,故选项正确;C、是单项式,故选项正确;D、当a为无理数时,是无理数,不是偶数,故选项错误;故选D.【点睛】本题考查了代数式的意义,注意a不一定为整数是解题的关键.3.下列事件中是不可能事件的是( )A守株待兔 B.瓮中捉鳖 C.水中捞月 D.百步穿杨【答案】C【解析】【分析】不可能事件是一定不会发生的事件,依据定义即可判断.【详解】解:A、守株待兔,不一定就能达到,是随机事件,故选项不符合;B、瓮中捉鳖是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,选项不符合;D、百步穿杨,未必达到,是随机事件,故选项不符合;故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.如图,将一副三角尺按下列位置摆放,使和互余的摆放方式是( )A. B.C. D.【答案】A【解析】【分析】根据图形,结合互余的定义判断即可.【详解】解:A、∠α与∠β互余,故本选项正确;B、∠α+∠β>90°,即不互余,故本选项错误;C、∠α+∠β=270°,即不互余,故本选项错误;D、∠α+∠β=180°,即互补,故本选项错误;故选A.【点睛】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.5.若关于x的方程kx2﹣6x+9=0有实数根,则k的取值范围是( )A.k<1 B.k≤1 C.k<1且k≠0 D.k≤1且k≠0【答案】B【解析】【详解】解:(1)当k=0时,-6x+9=0,解得x=; (2)当k≠0时,此方程是一元二次方程, ∵关于x的方程kx2-6x+9=0有实数根, ∴△=(-6)2-4k×9≥0,解得k≤1, 由(1)、(2)得,k的取值范围是k≤1. 故选B.6.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A. B.C. D.【答案】C【解析】【分析】根据三角形外心的定义得到三角形外心为三边的垂直平分线的交点,然后利用基本作图对各选项进行判断.【详解】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C.【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.7.如图,分别与相切于两点,,则( )A. B. C. D.【答案】C【解析】【分析】连接OA、OB,根据切线的性质定理,结合四边形AOBP的内角和为360°,即可推出∠AOB的度数,然后根据圆周角定理,即可推出∠C的度数.【详解】解:连接OA、OB, ∵直线PA、PB分别与⊙O相切于点A、B, ∴OA⊥PA,OB⊥PB, ∵∠P=72°, ∴∠AOB=108°, ∵C是⊙O上一点, ∴∠ACB=54°. 故选:C.【点睛】本题主要考查切线的性质、四边形的内角和、圆周角定理,关键在于熟练运用切线的性质,通过作辅助线构建四边形,最后通过圆周角定理即可推出结果.8.如图,是中线,四边形是平行四边形,增加下列条件,能判断是菱形的是( )A. B. C. D.【答案】A【解析】【分析】根据菱形的判定方法逐一分析即可.【详解】解:A、若,则AD=BD=CD=AE,∵四边形ADCE是平行四边形,则此时四边形ADCE为菱形,故选项正确;B、若,则四边形ADCE是矩形,故选项错误;C、若,则∠ADC=90°,则四边形ADCE是矩形,故选项错误;D、若,而AB>AD,则AE≠AD,无法判断四边形ADCE为菱形,故选项错误.故选A.【点睛】本题考查了菱形的判定,还涉及到平行四边形的性质,矩形的判定,等腰三角形的性质,解题的关键是掌握判定定理.9.如图,交双曲线于点A,且,若矩形的面积是8,且轴,则k的值是( )A.18 B.50 C.12 D.【答案】A【解析】【分析】过点A和点C分别作x轴的垂线,垂足为E和F,得到△OAE∽△OCF,设点A(m,n),求出AB和BC,利用矩形ABCD的面积为8求出mn,即k值.【详解】解:过点A和点C分别作x轴的垂线,垂足为E和F,∴AE∥CF,∴△OAE∽△OCF,∵OC:OA=5:3,∴OF:OE=CF:AE=5:3,设点A(m,n),则mn=k,∴OE=m,AE=n,∴OF=,CF=,∴AB=OF-OE=,BC=CF-AE=,∵矩形ABCD的面积为8,∴AB·BC=×=8,∴mn=18=k,故选A.【点睛】本题考查了相似三角形的判定和性质,反比例函数表达式,矩形的性质,解题的关键是利用相似三角形的性质表示出线段的长.10.从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是.A. B. C. D.1【答案】C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)设扇形半径为r,圆心角为n,∵弧长是,则=,则,∵面积是,则=,则360×240,则,则n=3600÷24=150°,故扇形的圆心角是,是假命题,则随机抽取一个是真命题的概率是,故选C.【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.计算:(1)______;(2)______;(3)______.【答案】(1).1(2).(3).-1【解析】【分析】根据零指数幂,特殊角的三角函数值,乘方运算法则分别计算即可.【详解】解:1,2×=,-1,故答案:1,,-1.【点睛】本题考查了零指数幂,特殊角的三角函数值,乘方运算,掌握运算法则是关键.12.若数据3,a,3,5,3的平均数是3,则这组数据中(1)众数是______;(2)a的值是______;(3)方差是______.【答案】(1).3(2).1(3).1.6【解析】【分析】根据平均数的定义先求出a的值,再根据众数的定义、以及方差公式进行计算即可得出答案.【详解】解:根据题意得,3+a+3+5+3=3×5,解得:a=1,则一组数据1,3,3,3,5的众数为3,方差为:==1.6,故答案为:(1)3;(2)1;(3)1.6【点睛】此题考查了众数、平均数和方差,用到的知识点是众数、平均数和方差的求法,注意计算不要出错.13.如图,点O在直线上,,则的度数是______.【答案】【解析】【分析】根据补角的定义,进行计算即可.【详解】解:由图可知:∠AOC和∠BOC互补,∵,∴∠BOC=180°-=,故答案为:.【点睛】本题考查了补角的定义,和角的计算,关键是掌握角的运算方法.14.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形……,按这样的方法拼成的第个正方形比第n个正方形多_____个小正方形.【答案】2n+3【解析】【分析】首先根据图形中小正方形的个数规律得出变化规律,进而得出答案.【详解】解:∵第一个图形有22=4个正方形组成, 第二个图形有32=9个正方形组成, 第三个图形有42=16个正方形组成, ∴第n个图形有(n+1)2个正方形组成,第n+1个图形有(n+2)2个正方形组成∴(n+2)2-(n+1)2=2n+3故答案为:2n+3.【点睛】此题主要考查了图形的变化类,根据图形得出小正方形的变化规律是解题关键.15.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了______个人.【答案】12【解析】【分析】设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有169人患了流感,列方程求解【详解】解:设平均一人传染了x人, x+1+(x+1)x=169 解得:x=12或x=-14(舍去). ∴平均一人传染12人. 故答案为:12.【点睛】本题考查理解题意的能力,关键是看到两轮传染,从而可列方程求解.16.如图,在中,,点P在斜边上,以为直角边作等腰直角三角形,,则三者之间的数量关系是_____.【答案】PA2+PB2=2PC2【解析】【分析】把AP2和PB2都用PC和CD表示出来,结合Rt△PCD中,可找到PC和PD和CD的关系,从而可找到PA2,PB2,PC2三者之间的数量关系;【详解】解:过点C作CD⊥AB,交AB于点D∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB, ∵PA2=(AD-PD)2=(CD-PD)2=CD2-2CD•PD+PD2, PB2=(BD+PD)2=(CD+PD)2=CD2-2CD•PD+PD2, ∴PA2+PB2=2CD2+2PD2=2(CD2+PD2), 在Rt△PCD中,由勾股定理可得PC2=CD2+PD2, ∴PA2+PB2=2PC2, 故答案为PA2+PB2=2PC2.【点睛】本题考查了等腰直角三角形的性质,勾股定理的应用,关键是作出辅助线,利用三线合一进行论证.17.如图①,在中,,点E是边的中点,点P是边上一动点,设.图②是y关于x的函数图象,其中H是图象上的最低点..那么的值为_______.【答案】7【解析】【分析】过B作AC的平行线,过C作AB的平行线,交于点D,证明四边形ABCD为菱形,得到点A和点D关于BC对称,从而得到PA+PE=PD+PE,推出当P,D,E共线时,PA+PE最小,即DE的长,观察图像可知:当点P与点B重合时,PD+PE=,分别求出PA+PE的最小值为3,PC的长,即可得到结果.【详解】解:如图,过B作AC的平行线,过C作AB的平行线,交于点D,可得四边形ABCD为平行四边形,又AB=AC,∴四边形ABCD为菱形,点A和点D关于BC对称,∴PA+PE=PD+PE,当P,D,E共线时,PA+PE最小,即DE的长,观察图像可知:当点P与点B重合时,PD+PE=,∵点E是AB中点,∴BE+BD=3BE=,∴BE=,AB=BD=,∵∠BAC=120°,∴∠ABD=(180°-120°)÷2×2=60°,∴△ABD为等边三角形,∴DE⊥AB,∠BDE=30°,∴DE=3,即PA+PE的最小

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐