四川省攀枝花市2018年中考数学真题试题(含解析)

2023-10-31 · U1 上传 · 13页 · 336 K

四川省攀枝花市2018年中考数学真题试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的1.下列实数中,无理数是( )A.0 B.﹣2 C. D.解:0,﹣2,是有理数,是无理数.故选C.2.下列运算结果是a5的是( )A.a10÷a2 B.(a2)3 C.(﹣a)5 D.a3•a2解:A.a10÷a2=a8,错误;B.(a2)3=a6,错误;C.(﹣a)5=﹣a5,错误;D.a3•a2=a5,正确;故选D.3.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是( )A.点M B.点N C.点P D.点Q解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.4.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为( )A.30° B.15° C.10° D.20°解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°.∵a∥b,∴∠ACD=180°﹣120°=60°,∴∠2=∠ACD﹣∠ACB=60°﹣45°=15°;故选B.5.下列平面图形中,既是中心对称图形,又是轴对称图形的是( )A.菱形 B.等边三角形 C.平行四边形 D.等腰梯形解:A.菱形既是中心对称图形,也是轴对称图形,故本选项正确;B.等边三角形不是中心对称图形,是轴对称图形,故本选项错误;C.平行四边形是中心对称图形,不是轴对称图形,故本选项错误;D.等腰梯形不是中心对称图形,是轴对称图形,故本选项错误.故选A.6.抛物线y=x2﹣2x+2的顶点坐标为( )A.(1,1) B.(﹣1,1) C.(1,3) D.(﹣1,3)解:∵y=x2﹣2x+2=(x﹣1)2+1,∴顶点坐标为(1,1).故选A.7.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限解:∵点A(a+1,b﹣2)在第二象限,∴a+1<0,b﹣2>0,解得:a<﹣1,b>2,则﹣a>1,1﹣b<﹣1,故点B(﹣a,1﹣b)在第四象限.故选D.8.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )A. B. C. D.解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为.故选A.9.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A. B.C. D.解:如图所示:过点C作CD⊥y轴于点D.∵∠BAC=90°,∴∠DAC+∠OAB=90°.∵∠DCA+∠DAC=90°,∴∠DCA=∠OAB.又∵∠CDA=∠AOB=90°,∴△CDA∽△AOB,∴===tan30°,则=,故y=x+1(x>0),则选项C符合题意.故选C.10.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为( )A.1 B.2 C.3 D.4解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB.∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA.∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC.∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE.∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL).∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个.故选B.二、填空题:本大题共6小题,每小题4分,共24分.11.分解因式:x3y﹣2x2y+xy=.解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2.12.如果a+b=2,那么代数式(a﹣)÷的值是.解:当a+b=2时,原式=•=•=a+b=2故答案为:2.13.样本数据1,2,3,4,5.则这个样本的方差是.解:∵1、2、3、4、5的平均数是(1+2+3+4+5)÷5=3,∴这个样本方差为s2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2;故答案为:2.14.关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是.解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1、2、3,则3≤a<4.故答案为:3≤a<4.15.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为.解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE===4,即PA+PB的最小值为4.故答案为:4.16.如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k=.解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.又∵S△BEC=4,∴BC•EO=4,即BC×OE=8=BO×AB=|k|.∵反比例函数图象在第一象限,k>0,∴k=8.故答案为:8.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤17.解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.18.某校为了预测本校九年级男生毕业体育测试达标情况,随机抽取该年级部分男生进行了一次测试(满分50分,成绩均记为整数分),并按测试成绩m(单位:分)分成四类:A类(45<m≤50),B类(40<m≤45),C类(35<m≤40),D类(m≤35)绘制出如图所示的两幅不完整的统计图,请根据图中信息解答下列问题:(1)求本次抽取的样本容量和扇形统计图中A类所对的圆心角的度数;(2)若该校九年级男生有500名,D类为测试成绩不达标,请估计该校九年级男生毕业体育测试成绩能达标的有多少名?解:(1)本次抽取的样本容量为10÷20%=50,扇形统计图中A类所对的圆心角的度数为360°×20%=72°;(2)估计该校九年级男生毕业体育测试成绩能达标的有500×(1﹣)=470名.19.攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意: 24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.20.已知△ABC中,∠A=90°.(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);(2)如图2,设BC边上的中线为AD,求证:BC=2AD.(1)解:如图1,AD为所作;(2)证明:延长AD到E,使ED=AD,连接EB、EC,如图2.∵CD=BD,AD=ED,∴四边形ABEC为平行四边形.∵∠CAB=90°,∴四边形ABEC为矩形,∴AE=BC,∴BC=2AD.21.如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;(3)求S△OEB.解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6.∵cos∠OAB═=,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,).∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:y=bx.∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;(3)S△OEB=OB•|yE|=×8×3=12.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°.∵DF⊥AC,∴∠DFC=90°.∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°.∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC∠C=30°,∴OM=OA==,AM=OM=.∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD.∵DF⊥AC,∴DF⊥OD.∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC.∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC.∵∠EBC=∠DAC,∴∠FDC=∠DAC.∵A、B、D、E四点共圆,∴∠DEF=∠ABC.∵∠ABC=∠C,∴∠DEC=∠C.∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.23.如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐