浙江省杭州市2018年中考数学真题试题(含解析)

2023-10-31 · U1 上传 · 11页 · 282.5 K

浙江省杭州市2018年中考数学真题试题一、选择题1.=(   )A. 3                                        B. -3                                         C.                                          D. 【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。2.数据1800000用科学计数法表示为(   )A. 1.86                               B. 1.8×106                               C. 18×105                               D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106   【分析】根据科学计数法的表示形式为:a×10n。其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。3.下列计算正确的是(   )A.                            B.                            C.                            D. 【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D不符合题意; 故答案为:A 【分析】根据二次根式的性质,对各选项逐一判断即可。4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。计算结果不受影响的是(   )A. 方差                                 B. 标准差                                 C. 中位数                                 D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响 故答案为:C 【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。5.若线段AM,AN分别是△ABC边上的高线和中线,则(   )A.                         B.                         C.                         D. 【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN 当BC边上的中线和高不重合时,则AM<AN ∴AM≤AN 故答案为:D 【分析】根据垂线段最短,可得出答案。6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则(   )A.                      B.                      C.                      D. 【答案】C【考点】二元一次方程的实际应用-鸡兔同笼问题【解析】【解答】根据题意得:5x-2y+0(20-x-y)=60,即5x-2y=60故答案为:C 【分析】根据圆圆这次竞赛得分为60分,建立方程即可。7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于(   )A.                                           B.                                           C.                                           D. 【答案】B【考点】概率公式,复合事件概率的计算【解析】【解答】解:根据题意可知,这个两位数可能是:31、32、33、34、35、36,,一共有6种可能得到的两位数是3的倍数的有:33、36两种可能 ∴P(两位数是3的倍数)= 【分析】利用列举法求出所有可能的结果数及得到的两位数是3的倍数的可能数,利用概率公式求解即可。8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则(   )A.                                B.  C.                                D. 【答案】A【考点】三角形内角和定理,矩形的性质【解析】【解答】解:∵矩形ABCD∴∠PAB+∠PAD=90°即∠PAB=90°-∠PAB ∵∠PAB=80° ∴∠PAB+∠PBA=180°-80°=100° ∴90°-∠PAB+∠PBA=100°即∠PBA-∠PAB=10°① 同理可得:∠PDC-∠PCB=180°-50°-90°=40°② 由②-①得:∠PDC-∠PCB-(∠PBA-∠PAB)=30° ∴ 故答案为:A 【分析】根据矩形的性质,可得出∠PAB=90°-∠PAB,再根据三角形内角和定理可得出∠PAB+∠PBA=100°,从而可得出∠PBA-∠PAB=10°①;同理可证得∠PDC-∠PCB=40°②,再将②-①,可得出答案。9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是(   )A. 甲                                         B. 乙                                         C. 丙                                         D. 丁【答案】B【考点】二次函数图象与系数的关系,二次函数的最值【解析】【解答】解:根据题意得:抛物线的顶点坐标为:(1,3)且图像经过(2,4)设抛物线的解析式为:y=a(x-1)2+3 ∴a+3=4 解之:a=1 ∴抛物线的解析式为:y=(x-1)2+3=x2-2x+4 当x=-1时,y=7, ∴乙说法错误 故答案为:B 【分析】根据甲和丙的说法,可知抛物线的顶点坐标,再根据丁的说法,可知抛物线经过点(2,4),因此设函数解析式为顶点式,就可求出函数解析式,再对乙的说法作出判断,即可得出答案。10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,(   ) A. 若,则                             B. 若,则 C. 若,则                             D. 若,则【答案】D【考点】三角形的面积,平行线分线段成比例【解析】【解答】解:如图,过点D作DF⊥AC于点F,过点B作BM⊥AC于点M ∴DF∥BM,设DF=h1,BM=h2 ∴ ∵DE∥BC ∴ ∴ ∵若 ∴设=k<0.5(0<k<0.5) ∴AE=AC∙k,CE=AC-AE=AC(1-k),h1=h2k ∵S1=AE∙h1=AC∙k∙h1,S2=CE∙h2=AC(1-k)h2 ∴3S1=k2ACh2,2S2=(1-K)∙ACh2 ∵0<k<0.5 ∴k2<(1-K) ∴3S1<2S2 故答案为:D 【分析】过点D作DF⊥AC于点F,过点B作BM⊥AC于点M,可得出DF∥BM,设DF=h1,BM=h2,再根据DE∥BC,可证得,若,设=k<0.5(0<k<0.5),再分别求出3S1和2S2,根据k的取值范围,即可得出答案。二、填空题11.计算:a-3a=________。【答案】-2a【考点】合并同类项法则及应用【解析】【解答】解:a-3a=-2a故答案为:-2a 【分析】利用合并同类项的法则计算即可。12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。【答案】135°【考点】对顶角、邻补角,平行线的性质【解析】【解答】解:∵a∥b∴∠1=∠3=45° ∵∠2+∠3=180° ∴∠2=180°-45°=135° 故答案为:135° 【分析】根据平行线的性质,可求出∠3的度数,再根据邻补角的定义,得出∠2+∠3=180°,从而可求出结果。13.因式分解:________【答案】【考点】提公因式法因式分解【解析】【解答】解:原式=(b-a)(b-a)-(b-a)=(b-a)(b-a-1)【分析】观察此多项式的特点,有公因式(b-a),因此提取公因式,即可求解。14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。【答案】30°【考点】垂径定理,圆周角定理【解析】【解答】解:∵DE⊥AB∴∠DCO=90° ∵点C时半径OA的中点 ∴OC=OA=OD ∴∠CDO=30° ∴∠AOD=60° ∵弧AD=弧AD ∴∠DEA=∠AOD=30° 故答案为:30° 【分析】根据垂直的定义可证得△COD是直角三角形,再根据中点的定义及特殊角的三角函数值,可求出∠AOD的度数,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求出结果。15.某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是________。【答案】60≤v≤80【考点】一次函数的图象,一次函数的实际应用,一次函数的性质【解析】【解答】解:根据题意得:甲车的速度为120÷3=40千米/小时2≤t≤3 若10点追上,则v=2×40=80千米/小时 若11点追上,则2v=120,即v=60千米/小时 ∴60≤v≤80 故答案为:60≤v≤80 【分析】根据函数图像可得出甲车的速度,再根据乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,可得出t的取值范围,从而可求出v的取值范围。16.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________。【答案】或3【考点】勾股定理,矩形的性质,正方形的性质,翻折变换(折叠问题)【解析】【解答】∵当点H在线段AE上时把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上 ∴四边形ADFE是正方形 ∴AD=AE ∵AH=AE-EH=AD-1 ∵把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上 ∴DC=DH=AB=AD+2 在Rt△ADH中,AD2+AH2=DH2 ∴AD2+(AD-1)2=(AD+2)2 解之:AD=3+2,AD=3-2(舍去) ∴AD=3+2 当点H在线段BE上时 则AH=AE-EH=AD+1 在Rt△ADH中,AD2+AH2=DH2 ∴AD2+(AD+1)2=(AD+2)2 解之:AD=3,AD=-1(舍去) 故答案为:或3 【分析】分两种情况:当点H在线段AE上;当点H在线段BE上。根据①的折叠,可得出四边形ADFE是正方形,根据正方形的性质可得出AD=AE,从而可得出AH=AD-1(或AH=AD+1),再根据②的折叠可得出DH=AD+2,然后根据勾股定理求出AD的长。三、简答题1

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐