2017年湖北省孝感市中考数学试卷(含解析版)

2023-10-31 · U1 上传 · 27页 · 570.6 K

2017年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣的绝对值是( )A.﹣3 B.3 C. D.﹣2.(3分)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个 B.3个 C.2个 D.1个3.(3分)下列计算正确的是( )A.b3•b3=2b3 B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6 D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b4.(3分)一个几何体的三视图如图所示,则这个几何体可能是( )A. B. C. D.5.(3分)不等式组的解集在数轴上表示正确的是( )A. B. C. D.6.(3分)方程=的解是( )A.x= B.x=5 C.x=4 D.x=﹣57.(3分)下列说法正确的是( )A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为8.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )A.(0,﹣2) B.(1,﹣) C.(2,0) D.(,﹣1)9.(3分)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( )A. B. C. D.10.(3分)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是( )①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5 二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数27500用科学记数法表示为 .12.(3分)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为 .13.(3分)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为 .14.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为 .15.(3分)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为 .16.(3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为 . 三、解答题(本大题共8小题,共72分)17.(6分)计算:﹣22++•cos45°.18.(8分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.19.(9分)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A95≤x≤1004B90≤x<95mC85≤x<90nD80≤x<8524E75≤x<808F70≤x<754请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为 ,表中:m= ,n= ;扇形统计图中,E等级对应扇形的圆心角α等于 度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.(8分)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为 .21.(8分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1•x2满足3x1=|x2|+2,求m的值.22.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(10分)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是 ;(2)求证:DE是⊙O的切线;(3)求线段DE的长.24.(13分)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为 ,伴随直线为 ,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为 和 ;(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的右侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值. 2017年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•孝感)﹣的绝对值是( )A.﹣3 B.3 C. D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选C.【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型 2.(3分)(2017•孝感)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个 B.3个 C.2个 D.1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角. 3.(3分)(2017•孝感)下列计算正确的是( )A.b3•b3=2b3 B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6 D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 4.(3分)(2017•孝感)一个几何体的三视图如图所示,则这个几何体可能是( )A. B. C. D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 5.(3分)(2017•孝感)不等式组的解集在数轴上表示正确的是( )A. B. C. D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 6.(3分)(2017•孝感)方程=的解是( )A.x= B.x=5 C.x=4 D.x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验. 7.(3分)(2017•孝感)下列说法正确的是( )A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数. 8.(3分)(2017•孝感)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )A.(0,﹣2) B.(1,﹣) C.(2,0) D.(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案.【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA上是解题的关键. 9.(3分)(2017•孝感)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐