2014年四川省宜宾市中考数学试卷(含解析版)

2023-10-31 · U1 上传 · 24页 · 790.1 K

2014年四川省宜宾市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2014•宜宾)2的倒数是() A.B.﹣C.±D.22.(3分)(2014•宜宾)下列运算的结果中,是正数的是() A.(﹣2014)﹣1B.﹣(2014)﹣1C.(﹣1)×(﹣2014)D.(﹣2014)÷20143.(3分)(2014•宜宾)如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是() A.B.C.D.4.(3分)(2014•宜宾)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为() A.B.C.D.5.(3分)(2014•宜宾)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是() A.x2+3x﹣2=0B.x2﹣3x+2=0C.x2﹣2x+3=0D.x2+3x+2=06.(3分)(2014•宜宾)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是() A.y=2x+3B.y=x﹣3C.y=2x﹣3D.y=﹣x+37.(3分)(2014•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是() A.nB.n﹣1C.()n﹣1D.n8.(3分)(2014•宜宾)已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m=2;⑤若d<1,则m=4.其中正确命题的个数是() A.1B.2C.4D.5二、填空题:本大题共8小题,每小题3分,共24分.9.(3分)(2014•宜宾)分解因式:x3﹣x=.10.(3分)(2014•宜宾)分式方程﹣=1的解是.11.(3分)(2014•宜宾)如图,直线a、b被第三条直线c所截,如果a∥b,∠1=70°,那么∠3的度数是.12.(3分)(2014•宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是cm.13.(3分)(2014•宜宾)在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.14.(3分)(2014•宜宾)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=.15.(3分)(2014•宜宾)如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM=.16.(3分)(2014•宜宾)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此判断下列等式成立的是(写出所有正确的序号)①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny.三、解答题(共8小题,满分72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(2014•宜宾)(1)计算:|﹣2|﹣(﹣)0+()﹣1(2)化简:(﹣)•.18.(6分)(2014•宜宾)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.19.(8分)(2014•宜宾)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.20.(8分)(2014•宜宾)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?21.(8分)(2014•宜宾)在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)求出图中格点四边形DEFG对应的S,N,L.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.22.(10分)(2014•宜宾)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.23.(10分)(2014•宜宾)如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=5,cos∠A=,求BE的长.24.(12分)(2014•宜宾)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由. 2014年四川省宜宾市中考数学试卷 参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2014•宜宾)2的倒数是() A.B.﹣C.±D.2考点:倒数.分析:根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:2的倒数是,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2014•宜宾)下列运算的结果中,是正数的是() A.(﹣2014)﹣1B.﹣(2014)﹣1C.(﹣1)×(﹣2014)D.(﹣2014)÷2014考点:负整数指数幂;正数和负数;有理数的乘法;有理数的除法.分析:分别根据负指数幂和有理数的乘除法进行计算求得结果,再判断正负即可.解答:解:A、原式=<0,故A错误;B、原式=﹣<0,故B错误;C、原式=1×2014=2014>0,故C正确;D、原式=﹣2014÷2014=﹣1<0,故D错误;故选C.点评:本题主要考查了有理数的乘除法,负指数幂的运算.负整数指数为正整数指数的倒数.3.(3分)(2014•宜宾)如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是() A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到左右相邻的3个矩形.故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(3分)(2014•宜宾)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为() A.B.C.D.考点:概率公式.专题:应用题;压轴题.分析:让白球的个数除以球的总数即为摸到白球的概率.解答:解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.故选B.点评:本题考查了概率的基本计算,摸到白球的概率是白球数比总的球数.5.(3分)(2014•宜宾)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是() A.x2+3x﹣2=0B.x2﹣3x+2=0C.x2﹣2x+3=0D.x2+3x+2=0考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2.解答:解:两个根为x1=1,x2=2则两根的和是3,积是2.A、两根之和等于﹣3,两根之积却等于﹣2,所以此选项不正确.B、两根之积等于2,两根之和等于3,所以此选项正确.C、两根之和等于2,两根之积却等3,所以此选项不正确.D、两根之和等于﹣3,两根之积等于2,所以此选项不正确.故选B.点评:验算时要注意方程中各项系数的正负.6.(3分)(2014•宜宾)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是() A.y=2x+3B.y=x﹣3C.y=2x﹣3D.y=﹣x+3考点:待定系数法求一次函数解析式;两条直线相交或平行问题.分析:根据正比例函数图象确定A点坐标再根据图象确定B点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.解答:解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3,故选D.点评:此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.7.(3分)(2014•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是() A.nB.n﹣1C.()n﹣1D.n考点:正方形的性质;全等三角形的判定与性质专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.点评:此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.8.(3分)(2014•宜宾)已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m=2;⑤若d<1,则m=4.其中正确命题的个数是() A.1B.2C.4D.5考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系和直线与圆的交点个数结合答案分析即可得到答案.解答:解:①若d>5时,直线与圆相离,则m=0,正确;②若d=5时,直线与圆相切,则m=1,故正确;③若1<d<5,则m=3,正确;④若d=1时,直线与圆相交,则m=2正确;⑤若d<1时,直线与圆相交,则m=2,故错误.故选C.点评:考查了直线与圆的位置关系,解题的关键是了解直线与圆的位置关系与d与r的数量关系.二、填空题:本大题共8小题,每小题3分,共24分.9.(3分)(2

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐