专题24动能定理的应用(二)28.(2023·江苏)如图所示,滑雪道AB由坡道和水平道组成,且平滑连接,坡道倾角均为45°。平台BC与缓冲坡CD相连。若滑雪者从P点由静止开始下滑,恰好到达B点。滑雪者现从A点由静止开始下滑,从B点飞出。已知A、P间的距离为d,滑雪者与滑道间的动摩擦因数均为,重力加速度为g,不计空气阻力。(1)求滑雪者运动到P点的时间t;(2)求滑雪者从B点飞出的速度大小v;(3)若滑雪者能着陆在缓冲坡CD上,求平台BC的最大长度L。 【答案】(1);(2);(3)【解析】(1)滑雪者从A到P根据动能定理有根据动量定理有联立解得(2)由于滑雪者从P点由静止开始下滑,恰好到达B点,故从P点到B点合力做功为0,所以当从A点下滑时,到达B点有(3)当滑雪者刚好落在C点时,平台BC的长度最大;滑雪者从B点飞出做斜抛运动,竖直方向上有水平方向上有联立可得29.(2023·浙江)一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角的直轨道、螺旋圆形轨道,倾角的直轨道、水平直轨道组成,除段外各段轨道均光滑,且各处平滑连接。螺旋圆形轨道与轨道、相切于处.凹槽底面水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁处,摆渡车上表面与直轨道下、平台位于同一水平面。已知螺旋圆形轨道半径,B点高度为,长度,长度,摆渡车长度、质量。将一质量也为的滑块从倾斜轨道上高度处静止释放,滑块在段运动时的阻力为其重力的0.2倍。(摆渡车碰到竖直侧壁立即静止,滑块视为质点,不计空气阻力,,)(1)求滑块过C点的速度大小和轨道对滑块的作用力大小;(2)摆渡车碰到前,滑块恰好不脱离摆渡车,求滑块与摆渡车之间的动摩擦因数;(3)在(2)的条件下,求滑块从G到J所用的时间。【答案】(1),;(2);(3)【解析】(1)滑块从静止释放到C点过程,根据动能定理可得解得滑块过C点时,根据牛顿第二定律可得解得(2)设滑块刚滑上摆渡车时的速度大小为,从静止释放到G点过程,根据动能定理可得解得摆渡车碰到前,滑块恰好不脱离摆渡车,说明滑块到达摆渡车右端时刚好与摆渡车共速,以滑块和摆渡车为系统,根据系统动量守恒可得解得根据能量守恒可得解得(3)滑块从滑上摆渡车到与摆渡车共速过程,滑块的加速度大小为所用时间为此过程滑块通过的位移为滑块与摆渡车共速后,滑块与摆渡车一起做匀速直线运动,该过程所用时间为则滑块从G到J所用的时间为30.(2022·浙江)如图所示,在竖直面内,一质量m的物块a静置于悬点O正下方的A点,以速度v逆时针转动的传送带MN与直轨道AB、CD、FG处于同一水平面上,AB、MN、CD的长度均为l。圆弧形细管道DE半径为R,EF在竖直直径上,E点高度为H。开始时,与物块a相同的物块b悬挂于O点,并向左拉开一定的高度h由静止下摆,细线始终张紧,摆到最低点时恰好与a发生弹性正碰。已知,,,,,物块与MN、CD之间的动摩擦因数,轨道AB和管道DE均光滑,物块a落到FG时不反弹且静止。忽略M、B和N、C之间的空隙,CD与DE平滑连接,物块可视为质点,取。(1)若,求a、b碰撞后瞬时物块a的速度的大小;(2)物块a在DE最高点时,求管道对物块的作用力与h间满足的关系;(3)若物块b释放高度,求物块a最终静止的位置x值的范围(以A点为坐标原点,水平向右为正,建立x轴)。【答案】(1);(2);(3)当时,,当时,【解析】(1)滑块b摆到最低点过程中,由机械能守恒定律解得与发生弹性碰撞,根据动量守恒定律和机械能守恒定律可得联立解得(2)由(1)分析可知,物块与物块在发生弹性正碰,速度交换,设物块刚好可以到达点,高度为,根据动能定理可得解得以竖直向下为正方向由动能定理联立可得(3)当时,物块位置在点或点右侧,根据动能定理得从点飞出后,竖直方向水平方向根据几何关系可得联立解得代入数据解得当时,从释放时,根据动能定理可得解得可知物块达到距离点0.8m处静止,滑块a由E点速度为零,返回到时,根据动能定理可得解得距离点0.6m,综上可知当时代入数据得31.(2022·广东)某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型。竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态。当滑块从A处以初速度为向上滑动时,受到滑杆的摩擦力f为,滑块滑到B处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动。已知滑块的质量,滑杆的质量,A、B间的距离,重力加速度g取,不计空气阻力。求:(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小和;(2)滑块碰撞前瞬间的速度大小v1;(3)滑杆向上运动的最大高度h。【答案】(1),;(2);(3)【解析】(1)当滑块处于静止时桌面对滑杆的支持力等于滑块和滑杆的重力,即当滑块向上滑动过程中受到滑杆的摩擦力为1N,根据牛顿第三定律可知滑块对滑杆的摩擦力也为1N,方向竖直向上,则此时桌面对滑杆的支持力为(2)滑块向上运动到碰前瞬间根据动能定理有代入数据解得。(3)由于滑块和滑杆发生完全非弹性碰撞,即碰后两者共速,碰撞过程根据动量守恒有碰后滑块和滑杆以速度v整体向上做竖直上抛运动,根据动能定理有代入数据联立解得。32.(2022·浙江)如图所示,处于竖直平面内的一探究装置,由倾角=37°的光滑直轨道AB、圆心为O1的半圆形光滑轨道BCD、圆心为O2的半圆形光滑细圆管轨道DEF、倾角也为37°的粗糙直轨道FG组成,B、D和F为轨道间的相切点,弹性板垂直轨道固定在G点(与B点等高),B、O1、D、O2和F点处于同一直线上。已知可视为质点的滑块质量m=0.1kg,轨道BCD和DEF的半径R=0.15m,轨道AB长度,滑块与轨道FG间的动摩擦因数,滑块与弹性板作用后,以等大速度弹回,sin37°=0.6,cos37°=0.8。滑块开始时均从轨道AB上某点静止释放,()(1)若释放点距B点的长度l=0.7m,求滑块到最低点C时轨道对其支持力FN的大小;(2)设释放点距B点的长度为,滑块第一次经F点时的速度v与之间的关系式;(3)若滑块最终静止在轨道FG的中点,求释放点距B点长度的值。【答案】(1)7N;(2) ();(3),,【解析】(1)滑块释放运动到C点过程,由动能定理经过C点时解得(2)能过最高点时,则能到F点,则恰到最高点时解得而要保证滑块能到达F点,必须要保证它能到达DEF最高点,当小球恰好到达DEF最高点时,由动能定理可解得则要保证小球能到F点,,带入可得(3)设全过程摩擦力对滑块做功为第一次到达中点时做功的n倍,则n=1,3,5,……解得 n=1,3,5,……又因为,当时,,当时,,当时,,满足要求。即若滑块最终静止在轨道FG的中点,释放点距B点长度的值可能为,,。33.(2021·福建)如图(a),一倾角的固定斜面的段粗糙,段光滑。斜面上一轻质弹簧的一端固定在底端C处,弹簧的原长与长度相同。一小滑块在沿斜面向下的拉力T作用下,由A处从静止开始下滑,当滑块第一次到达B点时撤去T。T随滑块沿斜面下滑的位移s的变化关系如图(b)所示。已知段长度为,滑块质量为,滑块与斜面段的动摩擦因数为0.5,弹簧始终在弹性限度内,重力加速度大小取,。求:(1)当拉力为时,滑块的加速度大小;(2)滑块第一次到达B点时的动能;(3)滑块第一次在B点与弹簧脱离后,沿斜面上滑的最大距离。【答案】(1);(2);(3)【解析】(1)设小滑块的质量为m,斜面倾角为,滑块与斜面间的动摩擦因数为,滑块受斜面的支持力大小为N,滑动摩擦力大小为f,拉力为时滑块的加速度大小为。由牛顿第二定律和滑动摩擦力公式有 ① ② ③联立①②③式并代入题给数据得 ④(2)设滑块在段运动的过程中拉力所做的功为W,由功的定义有 ⑤式中、和、分别对应滑块下滑过程中两阶段所受的拉力及相应的位移大小。依题意,,,,。设滑块第一次到达B点时的动能为,由动能定理有 ⑥联立②③⑤⑥式并代入题给数据得 ⑦(3)由机械能守恒定律可知,滑块第二次到达B点时,动能仍为。设滑块离B点的最大距离为,由动能定理有 ⑧联立②③⑦⑧式并代入题给数据得 ⑨34.(2021·北京)秋千由踏板和绳构成,人在秋千上的摆动过程可以简化为单摆的摆动,等效“摆球”的质量为m,人蹲在踏板上时摆长为,人站立时摆长为。不计空气阻力,重力加速度大小为g。(1)如果摆长为,“摆球”通过最低点时的速度为v,求此时“摆球”受到拉力T的大小。(2)在没有别人帮助的情况下,人可以通过在低处站起、在高处蹲下的方式使“摆球”摆得越来越高。a.人蹲在踏板上从最大摆角开始运动,到最低点时突然站起,此后保持站立姿势摆到另一边的最大摆角为。假定人在最低点站起前后“摆球”摆动速度大小不变,通过计算证明。b.实际上人在最低点快速站起后“摆球”摆动速度的大小会增大。随着摆动越来越高,达到某个最大摆角后,如果再次经过最低点时,通过一次站起并保持站立姿势就能实现在竖直平面内做完整的圆周运动,求在最低点“摆球”增加的动能应满足的条件。【答案】(1);(2)a.见解析;b.【解析】(1)根据牛顿运动定律解得(2)a.设人在最低点站起前后“摆球”的摆动速度大小分别为v1、v2,根据功能关系得已知v1=v2,得因为,得所以b.设“摆球”由最大摆角摆至最低点时动能为,根据功能关系得“摆球”在竖直平面内做完整的圆周运动,通过最高点最小速度为,根据牛顿运动定律得“摆球”在竖直平面内做完整的圆周运动,根据功能关系得得35.(2021·山东)如图所示,三个质量均为m的小物块A、B、C,放置在水平地面上,A紧靠竖直墙壁,一劲度系数为k的轻弹簧将A、B连接,C紧靠B,开始时弹簧处于原长,A、B、C均静止。现给C施加一水平向左、大小为F的恒力,使B、C一起向左运动,当速度为零时,立即撤去恒力,一段时间后A离开墙壁,最终三物块都停止运动。已知A、B、C与地面间的滑动摩擦力大小均为f,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内。(弹簧的弹性势能可表示为:,k为弹簧的劲度系数,x为弹簧的形变量)(1)求B、C向左移动的最大距离和B、C分离时B的动能;(2)为保证A能离开墙壁,求恒力的最小值;(3)若三物块都停止时B、C间的距离为,从B、C分离到B停止运动的整个过程,B克服弹簧弹力做的功为W,通过推导比较W与的大小;(4)若,请在所给坐标系中,画出C向右运动过程中加速度a随位移x变化的图像,并在坐标轴上标出开始运动和停止运动时的a、x值(用f、k、m表示),不要求推导过程。以撤去F时C的位置为坐标原点,水平向右为正方向。【答案】(1)、;(2);(3);(4)【解析】(1)从开始到B、C向左移动到最大距离的过程中,以B、C和弹簧为研究对象,由功能关系得弹簧恢复原长时B、C分离,从弹簧最短到B、C分离,以B、C和弹簧为研究对象,由能量守恒得联立方程解得(2)当A刚要离开墙时,设弹簧得伸长量为,以A为研究对象,由平衡条件得若A刚要离开墙壁时B得速度恰好等于零,这种情况下恒力为最小值,从弹簧恢复原长到A刚要离开墙得过程中,以B和弹簧为研究对象,由能量守恒得结合第(1)问结果可知根据题意舍去,所以恒力得最小值为(3)从B、C分离到B停止运动,设B的路程为,C的位移为,以B为研究对象,由动能定理得以C为研究对象,由动能定理得由B、C得运动关系得联立可知(4)小物块B、C向左运动过程中,由动能定理得解得撤去恒力瞬间弹簧弹力为则坐标原点的加速度为之后C开始向右运动过程(B、C系统未脱离弹簧)加速度为可知加速度随位移为线性关系,随着弹簧逐渐恢复原长,减小,减小,弹簧恢复原长时,B和C分离,之后C只受地面的滑动摩擦力,加速度为负号表示C的加速度方向水平向左;从撤去恒力之后到弹簧恢复原长,以B、C为研究对象,由动能定理得脱离弹簧瞬间后C速度为,之后C受到滑动摩擦力减速至0,由能量守恒得解得脱离弹簧后,C运动的距离为则C最后停止的位移为所以C向右运动的图象为36.(2020·浙江)小明将如图所示的装置放在水平地面上,该装置由弧形轨道、竖直圆轨道、水平直轨道和
十年(2014-2023)高考物理真题分项汇编专题24 动能定理的应用(二)(解析版)-(全国通用)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片