高考数学专题05 回归分析(解析版)

2023-11-09 · U1 上传 · 20页 · 341.1 K

专题5回归分析例1.已知回归方程ŷ=5x+1,则该方程在样本(1,4)处的残差为( )A.﹣2 B.1 C.2 D.5【解析】解:当x=1时,ŷ=5x+1=6,∴方程在样本(1,4)处的残差是4﹣6=﹣2.故选:A.例2.研究变量x,y得到一组样本数据,进行回归分析,有以下结论①残差平方和越小的模型,拟合的效果越好;②用相关指数R2来刻画回归效果,R2越小说明拟合效果越好;③在回归直线方程ŷ=-0.2x+0.8中,当解释变量x每增加1个单位时,预报变量ŷ平均减少0.2个单位;④若变量y和x之间的相关系数为r=﹣0.9462,则变量y和x之间的负相关很强.以上正确说法的是 ①③④ .【解析】解:①可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故①正确;②用相关指数R2来刻画回归效果,R2越大说明拟合效果越好,故②错误;③在回归直线方程ŷ=-0.2x+0.8中中,当解释变量x每增加1个单位时,预报变量ŷ平均减少0.2个单位,故③正确;④若变量y和x之间的相关系数为r=﹣0.9462,r的绝对值趋向于1,则变量y和x之间的负相关很强,故④正确.故答案为:①③④.例3.下列命题中,正确的命题有 ②③ .①回归直线ŷ=b̂x+â恒过样本点中心(x,y),且至少过一个样本点;②用相关指数R2来刻画回归效果,表示预报变量对解释变量变化的贡献率,R2越接近于1说明模型的拟合效果越好;③残差图中残差点比较均匀的落在水平的带状区域中,说明选用的模型比较合适;④两个模型中残差平方和越大的模型的拟合效果越好.【解析】解:①回归直线ŷ=b̂x+â恒过样本点中心(x,y),不一定过样本点,故①正确;②用相关指数R2来刻画回归效果,表示预报变量对解释变量变化的贡献率,R2越接近于1说明模型的拟合效果越好,正确;③残差图中残差点比较均匀的落在水平的带状区域中,说明选用的模型比较合适,正确;④两个模型中残差平方和越大的模型的拟合效果越差.故④错误,故正确的是②③,故答案为:②③例4.下列命题:①相关指数R2越小,则残差平方和越大,模型的拟合效果越好.②对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”可信程度越大.③残差点比较均匀地落在水平带状区域内,带状区域越宽,说明模型拟合精度越高.④两个随机变量相关性越强,则相关系数的绝对值越接近0.其中错误命题的个数为 4 .【解析】解:对于①,相关指数R2越小,则残差平方和越大,此时模型的拟合效果越差,所以①错误;对于②,对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”可信程度越小,所以②错误;对于③,残差点比较均匀地落在水平带状区域内,带状区域越宽,说明模型拟合精度越低,所以③错误;对于④,两个随机变量相关性越强,则相关系数的绝对值越接近1,所以④错误.综上知,错误命题的序号是①②③④,共4个.故答案为:4.例5.垃圾是人类日常生活和生产中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,所以需要无害化、减量化处理.某市为调査产生的垃圾数量,采用简单随机抽样的方法抽取20个县城进行了分析,得到样本数据(xi,yi)(i=1,2,……,20),其中xi和yi分别表示第i个县城的人口(单位:万人)和该县年垃圾产生总量(单位:吨),并计算得i=120xi=80,i=120yi=4000,i=120(xi-x)2=80,i=120(yi-y)2=8000,i=120(xi-x)(yi-y)=7000.(1)请用相关系数说明该组数据中y与x之间的关系可用线性回归模型进行拟合;(2)求y关于x的线性回归方程;(3)某科研机构研发了两款垃圾处理机器,如表是以往两款垃圾处理机器的使用年限(整年)统计表:使用年限台数款式1年2年3年4年5年甲款520151050乙款152010550某环保机构若考虑购买其中一款垃圾处理器,以使用年限的频率估计概率.根据以往经验估计,该机构选择购买哪一款垃圾处理机器,才能使用更长久?参考公式:相关系数r=i=1n(xi-x)(yi-y)i=1n(xi-x)i=1n(yi-y)2.对于一组具有线性相关关系的数据(xi,yi)(i=1,2,……,n),其回归直线ŷ=b̂x+â的斜率和截距的最小二乘估计分别为:b̂=i=1n(xi-x)(yi-y)i=1n(xi-x)2,â=y-b̂x.【解析】解:(1)由题意知相关系数r=i=120(xi-x)(yi-y)i=120(xi-x)2i=120(yi-y)2=70080×8000=78=0.875,因为y与x的相关系数接近1,所以y与x之间具有较强的线性相关关系,可用线性回归模型进行拟合.(2)由题意可得,b̂=i=120(xi-x)(yi-y)i=120(xi-x)2=70080=8.75,â=y-b̂x=400020-8.75×8020=200-8.75×4=165,所以ŷ=8.75x+165.(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X(单位:万元)的分布列为X﹣50050100P0.10.40.30.2E(X)=﹣50×0.1+0×0.4+50×0.3+100×0.2=30(万元)购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y(单位:万元)的分布列为:Y﹣302070120P0.30.40.20.1E(Y)=﹣30×0.3+20×0.4+70×0.2+120×0.1=25(万元)因为E(X)>E(Y),所以该县城选择购买一台甲款垃圾处理机器更划算.例6.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.据统计该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,请计算相关系数r(精确到0.01),并以此判定是否可用线性回归模型拟合y与x的关系?若是请求出回归直线方程,若不是请说明理由;(2)过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:周光照量X(单位:小时)30<X<5050≤X≤70n≥2光照控制仪最多可运行台数542若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了5台光照控制仪,求商家在过去50周每周利润的平均值.附:对于一组数据(x1,y1),(x2,y2),……,(xn,yn),其相关系数公式r=i=1n(xi-x)(yi-y)i=1n(xi-x)2i=1n(yi-y)2,回归直线ŷ=b̂x+â的斜率和截距的最小二乘估计分别为:b̂=i=1n(xi-x)(yi-y)i=1n(xi-x)2=i=1nxiyi-nxyi=1n(xi-x)2,â=y-b̂x,参考数据0.3≈0.55,0.9≈0.95.【解析】解:(1)由已知数据可得x=2+4+5+6+85=5,y=3+4+4+4+55=4,因为i=15(xi-x)(yi-y)=(-3)×(-1)+0+0+0+3×1=6,i=15(xi-x)2=(-3)2+(-1)2+02+12+32=25,i=15(yi-y)2=(-1)2+02+02+02+12=2.所以相关系数r=i=1n(xi-x)(yi-y)i=1n(xi-x)2i=1n(yi-y)2=625⋅2=910≈0.95,因为r>0.75,所以可用线性回归模型拟合y与x的关系,因为b̂=i=1n(xi-x)(yi-y)i=1n(xi-x)2=620=0.3,â=y-b̂x=2.5,所以回归直线方程y=0.3x+2.5.(2)记商家周总利润为Y元,由条件可得在过去50周里:X>70时,共有10周,只有2台光照控制仪运行,周总利润Y=2×3000﹣3×1000=3000元,当50≤X≤70时,共有35周,有4台光照控制仪运行,周总利润Y=4×3000﹣1×1000=11000元,当X<50时,共有5周,5台光照控制仪都运行,周总利润Y=5×3000=15000元,所以过去50周每周利润的平均值Y=3000×10+11000×35+15000×550=9800元,所以商家在过去50周每周利润的平均值为9800元.例7.湖南省从2021年开始将全面推行“3+1+2”的新高考模式,新高考对化学、生物、地理和政治等四门选考科目,制定了计算转换T分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y等级转换;②原始分等级内等比例转换赋分.某校的一次年级统考中,政治、生物两选考科目的原始分分布如表:等级ABCDE比例约15%约35%约35%约13%约2%政治学科各等级对应的原始分区间[81,98][72,80][66,71][63,65][60,62]生物学科各等级对应的原始分区间[90,100][77,89][69,76][66,68][63,65]现从政治、生物两学科中分别随机抽取了20个原始分成绩数据,作出茎叶图:(1)根据茎叶图,分别求出政治成绩的中位数和生物成绩的众数;(2)该校的甲同学选考政治学科,其原始分为82分,乙同学选考生物学科,其原始分为91分,根据赋分转换公式,分别求出这两位同学的转化分;(3)根据生物成绩在等级B的6个原始分和对应的6个转化分,得到样本数据(Yi,Ti),请计算生物原始分Yi与生物转换分Ti之间的相关系数,并根据这两个变量的相关系数谈谈你对新高考这种“等级转换赋分法”的看法.附1:等级转换的等级人数占比与各等级的转换分赋分区间等级ABCDE原始分从高到低排序的等级人数占比约15%约35%约35%约13%约2%转换分T的赋分区间[86,100][71,85][56,70][41,55][30,40]附2:计算转换分T的等比例转换赋分公式:Y2-YY-Y1=T2-TT-T1.(其中:Y1,Y2别表示原始分Y对应等级的原始分区间下限和上限;T1,T2分别表示原始分对应等级的转换分赋分区间下限和上限.T的计算结果按四舍五入取整).附3:i=16(Yi-Y)(Ti-T)=74,i=16(Yi-Y)2i=16(Ti-T)2=5494≈74.12,r=i=1n(Yi-Y)(Ti-T)i=1n(Yi-Y)2i=1n(Ti-T)2.【解析】解:(1)根据茎叶图知,政治成绩的中位数为72,生物成绩的众数为73;(2)甲同学选考政治学科的等级为A,由转换赋分公式:98-8282-81=100-TT-86,解得T=87;乙同学选考生物学科的等级为A,由赋分转换公式:100-9191-90=100-TT-86,解得T=87;所以甲、乙两位同学的转换分都是87分.(3)由题意知,r=i=1n(Yi-Y)(Ti-T)i=1n(Yi-Y)2i=1n(Ti-T)2=7474.12≈0.998,说法1:等级转换赋分公平,因为相关系数十分接近1,接近函数关系,因此高考这种“等级转换赋分”具有公平性与合理性.说法2:等级转换赋分法不公平,在同一等级内,原始分与转化分是确定的函数关系,理论上原始分与转化分的相关系数为1,在实际赋分过程中由于数据的四舍五入,使得实际的转化分与应得的转化分有一定的误差,极小部分同学赋分后会出现偏高或偏低的现象.(只要说法有道理,都可以得分).例8.某市房管局为了了解该市市民2018年1月至2019年1月期间买二手房情况,首先随机抽样其中200名购房者,并对其购房面积m(单位:平方米,60≤m≤130)进行了一次调查统计,制成了如图1所示的频

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐