2018年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A. B. C. D.2.已知集合,,则A. B. C. D.3.函数的图像大致为4.已知向量,满足,,则A.4 B.3 C.2 D.05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.6.双曲线的离心率为,则其渐近线方程为A. B. C. D.7.在中,,,,则A. B. C. D.8.为计算,设计了如图的程序框图,则在空白框中应填入A. B.C. D.9.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.10.若在是减函数,则的最大值是A. B. C. D.11.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.12.已知是定义域为的奇函数,满足.若,则A. B.0 C.2 D.50二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为__________.14.若满足约束条件则的最大值为__________.15.已知,则__________.16.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。17.(12分) 记为等差数列的前项和,已知,. (1)求的通项公式; (2)求,并求的最小值.18.(12分) 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分) 如图,在三棱锥中,,,为的中点. (1)证明:平面; (2)若点在棱上,且,求点到平面的距离.20.(12分) 设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程; (2)求过点,且与的准线相切的圆的方程.21.(12分)已知函数. (1)若,求的单调区间; (2)证明:只有一个零点.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率.23.[选修4-5:不等式选讲](10分) 设函数. (1)当时,求不等式的解集; (2)若,求的取值范围.绝密★启用前2018年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题1.D 2.C 3.B 4.B 5.D 6.A7.A 8.B 9.C 10.C 11.D 12.C二、填空题13.y=2x–2 14.9 15. 16.8π三、解答题17.解:(1)设{an}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{an}的通项公式为an=2n–9.(2)由(1)得Sn=n2–8n=(n–4)2–16.所以当n=4时,Sn取得最小值,最小值为–16.18.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.学科@网19.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.20.解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).设A(x1,y1),B(x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.21.解:(1)当a=3时,f(x)=,f′(x)=.令f′(x)=0解得x=或x=.当x∈(–∞,)∪(,+∞)时,f′(x)>0;当x∈(,)时,f′(x)<0.故f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.(2)由于,所以等价于.设=,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(–∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.学·科网又f(3a–1)=,f(3a+1)=,故f(x)有一个零点.综上,f(x)只有一个零点.22.解:(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.23.解:(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.i(2+3i)=()A.3-2i B.3+2i C.-3-2i D.-3+2i解析:选D2.已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3} B.{5} C.{3,5} D.{1,2,3,4,5,7}解析:选C3.函数f(x)=eq\f(ex-e-x,x2)的图像大致为()解析:选Bf(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)=eq\f(e2-e-2,4)>1,故选B4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=()A.4 B.3 C.2 D.0解析:选Ba·(2a-b)=2a2-a·b=2+1=35.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3解析:选D5人选2人有10种选法,3人选2人有3中选法。6.双曲线eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的离心率为eq\r(3),则其渐近线方程为()A.y=±eq\r(2)x B.y=±eq\r(3)x C.y=±eq\f(\r(2),2)x D.y=±eq\f(\r(3),2)x解析:选Ae=eq\r(3)c2=3a2b=eq\r(2)a7.在ΔABC中,coseq\f(C,2)=eq\f(\r(5),5),BC=1,AC=5,则AB=()A.4eq\r(2) B.eq\r(30) C.eq\r(29) D.2eq\r(5)解析:选AcosC=2cos2eq\f(C,2)-1=-eq\f(3,5)AB2=AC2+BC2-2AB·BC·cosC=32AB=4eq\r(2)8.为计算S=1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)+……+eq\f(1,99)-eq\f(1,100),设计了右侧的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+4解析:选B9.在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.eq\f(\r(2),2) B.eq\f(\r(3),2) C.eq\f(\r(5),2) D.eq\f(\r(7),2)解析:选C即AE与AB所成角,设AB=2,则BE=eq\r(5),故选C10.若f(x)=cosx-sinx在[0,a]是减函数,则a的最大值是()A.eq\f(π,4) B.eq\f(π,2) C.eq\f(3π,4) D.π解析:选Cf(x)=eq\r(2)cos(x+eq\f(π,4)),依据f(x)=cosx与f(x)=eq\r(2)cos(x+eq\f(π,4))的图象关系知a的最大值为eq\f(3π,4)。11.已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=600,则C的离心率为()A.1-eq\f(\r(3),2) B.2-eq\r(3) C.eq\f(\r(3)-1,2) D.eq\r(3)-1解析:选D依题设|PF1|=c,|PF2|=eq\r(3)c,由|PF1|+|PF2|=2a可得12.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.-50 B.0 C.2 D.50解析:选C由f(1-x)=f(1+x)得f(x+2)=-f(x),所以f(x)是以4为周期的奇函数,且f(-1)=-f(1)=-2,f(0)=0,f(1)=2,f(2)=f(0)=0,f(3)=f(-1)=-2,f(4)=f(0)=0;f(1)+f(2)+f(3)+…+f(50)=f(1)+f(2)=2二、填空题:本题共4小题,每小题5分,共20分。13.曲线y=2lnx在点(1,0)处的切线方程为__________.解析:y=2x-214.若x,y满足约束条件eq\b\lc\{(\a\al\co2(x+2y-5≥0,,x-2y+3≥0,,x-5≤0,)),则z=x+y的最大值为__________.解析:915.已知tan(α-eq\f(5π,4))=eq\f(1,5),则tanα=__________.解
2018年海南省高考数学试题及答案(文科)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片