绝密★本科目考试启用前2022年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集,集合,则∁∪A=()A. B. C. D.2.若复数z满足,则()A.1 B.5 C.7 D.253.若直线是圆的一条对称轴,则()A. B. C.1 D.4己知函数,则对任意实数x,有()A. B.C. D.5已知函数,则()A.在上单调递减 B.在上单调递增C.在上单调递减 D.在上单调递增6.设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是()A.当,时,二氧化碳处于液态B.当,时,二氧化碳处于气态C.当,时,二氧化碳处于超临界状态D.当,时,二氧化碳处于超临界状态8.若,则()A.40 B.41 C. D.9.已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合.设集合,则T表示的区域的面积为()A. B. C. D.10.在中,.P为所在平面内的动点,且,则的取值范围是()A. B. C. D.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数的定义域是_________.12.已知双曲线渐近线方程为,则__________.13.若函数的一个零点为,则________;________.14.设函数若存在最小值,则a的一个取值为________;a的最大值为___________.15.己知数列各项均为正数,其前n项和满足.给出下列四个结论:①的第2项小于3;②为等比数列;③为递减数列;④中存在小于的项.其中所有正确结论的序号是__________.三、解答题共6小愿,共85分.解答应写出文字说明,演算步骤或证明过程.16.在中,.(1)求;(2)若,且的面积为,求的周长.17.如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.(1)求证:平面;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:985,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)19.已知椭圆:的一个顶点为,焦距为.(1)求椭圆E的方程;(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.20.已知函数.(1)求曲线在点处的切线方程;(2)设,讨论函数在上单调性;(3)证明:对任意的,有.21.已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;(2)若为连续可表数列,求证:k的最小值为4;(3)若为连续可表数列,且,求证:.
精品解析:2022年北京市高考数学试题(原卷版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片