{#{QQABCQSEogiAAABAAQhCQwUKCgGQkAEAAAoGBEAIIAAAyQNABAA=}#}{#{QQABCQSEogiAAABAAQhCQwUKCgGQkAEAAAoGBEAIIAAAyQNABAA=}#}{#{QQABCQSEogiAAABAAQhCQwUKCgGQkAEAAAoGBEAIIAAAyQNABAA=}#}{#{QQABCQSEogiAAABAAQhCQwUKCgGQkAEAAAoGBEAIIAAAyQNABAA=}#}{#{QQABCQSEogiAAABAAQhCQwUKCgGQkAEAAAoGBEAIIAAAyQNABAA=}#}{#{QQABCQSEogiAAABAAQhCQwUKCgGQkAEAAAoGBEAIIAAAyQNABAA=}#}五校联合考试数学答案(2)ACCD2,设CDx,则ACx2,一、单选cx22141在ABC中cos14Bcxc,22.ACADBBCD22c二、多选142xcx222在与BCD中,cos,cos,630BCABCDxc22.ABDBCAC42xx三、填空题321321ccccc2330.0,.2221712.6013.14.145117.解:(1)取PA中点G,连接GQ,GD.点Q为PB中点,GQABGQAB//,.2四、解答题1底面是边长为2的正方形,O为CD中点,DOABDOAB//,.215.解:(1)若高一选修滑雪,设高三冬季学期选修滑冰为随机事件A,GQOD//,GQOD四边形GQOD是平行四边形.OQDG//.323则PA().4510OQ平面PADGD,平面PADOQ,//平面PAD.(2)随机变量X的可能取值为1,2.(2)DQ平面PBCBC,平面PBCDQBC.32311322117PX(1),PX(2).534320534320又底面是边长为2的正方形,DCBC,,DQDCDBC平面DCQ.所以X的分布列为:OQ平面,BCOQ.又CQ平面,BCCQ.X12PBQB26,6,BCQC2,2.1372020底面是边长为2的正方形,DB22,DQ2.DQCQ,13727EX()2.202020O为中点,OQDC.又BCOQDCBCC,,OQ平面ABCD.16.解:(1)a1,coscosCcAbBaCcAbB2coscoscos2cos0.取AB中点E,以OE,,OCOQ所在直线分别为x,,yz轴建立如图所示的空间直角坐标系O-xyz,sinACCABBACBBcossincos2sincossin()2sincos0.1则OQABDP(0,0,0),(0,0,1),(2,1,0),(2,1,0),(0,1,0),(2,1,2)又ABCACB,sin()sin0,cosBB.232024届高三联合模拟考试数学试卷答案1/4{#{QQABCQSEogiAAABAAQhCQwUKCgGQkAEAAAoGBEAIIAAAyQNABAA=}#}所以6tmAPADAQ(4,0,2),(2,0,0),(2,1,1),yy,122P2234t所以483tm40,且因为Mxy11,是椭圆上一点,满足设平面PAD法向量为m(,,)xyz,312m2yy.1234t2mAP4x2z0则m(0,1,0)x2mAD20xxy22yyy23(1)111,所以kk1113,11BM24Q43xxx1112242设平面QAD法向量为n(,,)xyz,x144nAQxyz2033yy12则n(0,1,1)则kk122,即kk.因为kkBM24kBM2xx22nADx20BM812DCOmn2yy12yy12cos,mn2AB2||||mn2tymtym1222ty1yt212myym22312m2又二面角PADQ范围为(0,),234t234m3(2)3m222,tmt(312)6(2)mm24(2)4(2)8mm2所以二面角的大小为.m243434t22t2432c1a2,所以m,此时4834=48(3)0tt22,22222xy39918.解:(1)由题意可得:abc,解得b3,所以椭圆的方程为:1;4333c12212ab4故直线恒过x轴上一定点D,0.3(2)依题意,A2,0,B2,0,设Mxy11,,Nxy22,,直线BM斜率为kBM.64tmtyy=,1222若直线MN的斜率为0,则点MN,关于y轴对称,必有kk120,不合题意.所以直线3tt434因此2,所以SS123m1232yy1222.的斜率必不为0,设其方程为xtymm2,3tt43(34)223xy412,2221212与椭圆C的方程联立得346312tytmym0,y1y222y1y2xtym,23232024届高三联合模拟考试数学试卷答案2/4{#{QQABCQSEogiAAABAAQhCQwUKCgGQkAEAAAoGBEAIIAAAyQNABAA=}#}8332224存在x11,ln2使得Fx1=0,存在x2ln2,2使得Fx2=0,2223t34t39839y1y2y1y24y1y23322343t2xx,时,Fx0,fx0,fx单调递增;34t18314xxx12,时,Fx0,fx0,单调递减;22334t934t2xx1,+时,,,单调递增;11834令x0,,22SSxx121344t39所以a时,有一个极大值,一个极小值。211862xxxx当即t0时,SS12取得最大值.(3)fxaexe2212e(aex1),34t249834861111a2SSxx2(0,]由xR,fx+0,fa0+0,得a<0,12399aaaaxxx19.解:(1)当a0时,fxxe2,fxxe2(1).令gxaxe1,则gx在R上递减,fe14.曲线yfx在点(1,(1f))处的切线方程为x0时,ex(0,1),aaex(,0),gxaxaxe11x,yexeexe4(1)242.则gaaa1(1)10又gae101,112xxx0(2)当a时,fxe2xe,定义域为,xa01,1使得gx00,即gxax00e1=0222xxxxfxe2x1eee2x2,且当xx,0时,gx0即fx′0;xx令Fxxe22,则Fxe2,当xx00,时,gx0即fx′0,2xx00当x,ln2,Fx0;当xln2,,Fx0;fx在,x0递增,在x0,递减,f(x)maxf(x0)ae2x0e,x1所以Fx在,ln2递减,在ln2,上递增,由,a0,ex0x0FxF(ln2)22ln222ln20,1xxe(1)(1)1xx00min由fx()+0得(x+1)e002xe0即0,maxa00x1x1100F10,F(2)e260e2由x010得x011,∴21x0,2024届高三联合模拟考试数学试卷答案3/4{#{QQABCQSEogiAAABAAQhCQwUKCgGQkAEAAAoGBEAIIAAAyQNABAA=}#}x1x1xa0,设hxx21,则hx()0,ex0exex12可知hx在2,1上递增,hxhe()(2)(12)2,h(x)h(1)02e实数a的取值范围是[(12),0)e2.2024届高三联合模拟考试数学试卷答案4/4{#{QQABCQSEogiAAABAAQhCQwUKCgGQkAEAAAoGBEAIIAAAyQNABAA=}#}
数学-吉林省长春市五校2023-2024学年高三上学期联合模拟考试
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片