期中数学试题答案一、单项选择题1-5CCADB6-8CDD二、多项选择题9.ACD10.BC11.AD12.ABD55111三、13.614.415.0,,16.,012612e17.(1)因为f(x)sin(3x)的图象关于直线x对称,8所以3kkZ,.............................................1分82得k,kZ,因为,所以k0,,.......................2分8228所以f(x)sin3x,.............................................3分8fxsin3xsin3x.............................................4分24248所以fx为奇函数成立............................................5分24(2)由(1)可得:fxsin3x243将fx的图象向左平移个单位,再将横坐标伸长为原来的倍,则2492g(x)sin2x............................................7分3πππ5ππ当2kπ2x2kπ,即kπxkπ(kZ),2321212函数g(x)sin2x是增函数,.............................................9分35ππ故函数gx的单调递增区间是kπ,kπ(kZ)...............................10分12121{#{QQABYYYQogggQgAAAAgCQwVyCAAQkBACCKoOAAAEsAABgRNABAA=}#}18.(1)设等差数列an的公差为d,由题可知d0,因为a1a3a5a7a95a545,所以a59,............................................2分2又a8是a5与a13的等比中项,所以a8a5a13,.............................................3分即2,得或(舍去)分a53da5a58dd2d0.............................................5所以ana5n5d2n1..............................................6分2n1(2)由(1)知:b.n3n所以数列bn的前n项和Tnb1b2bn1bn2n1n1111132n32n1①............................................7分333323nn11①得:11111②分Tn132n32n1...............................833333323nn1211111两式相减得:Tn22n1333333111n1193n1122n1.............................................10分13133n化简得:1分Tn1n1.............................................113n因为,所以1,所以分nNn10Tn1.............................................12319.13解:(I)由已知得bcsinA(a2b2c2),...........................................1分24b2c2a2∴sinA3.2bc即sinA3cosA.............................................3分∴tanA3.............................................4分2{#{QQABYYYQogggQgAAAAgCQwVyCAAQkBACCKoOAAAEsAABgRNABAA=}#}2又∵A(0,),A,...........................................5分3(II)由cosADBcosADC得:...........................................6分AD2BD2AB2AD2DC2AC2,又∵D为BC的中点,∴BDDC7,AD3,2AD·BD2AD·DC2222∴ABAC20,即bc20.............................................8分b2c22821又∵cos,2bc32∴bc8............................................9分又∵bc,∴b4,c2,...........................................10分32csinA21∴sinC2............................................12分a271420.(1)由题意知,在等腰梯形ABCD中,AB//CD,又E,F分别为AB,CD的中点,所以EFAB,EFCD,....................................1分即折叠后EFDF,EFCF,....................................2分DFCFF,所以EF平面DCF,....................................3分又MC平面DCF,所以EFMC....................................4分(2)∵平面BEFC平面AEFD,平面BEFC平面AEFDEF,且EFDF,所以DF平面BEFC,CF平面BEFC,DFCF,DF,EF,CF两两垂直,以F为坐标原点,分别以FD,FC,FE所在直线为x,y,z轴,建立空间直角坐标系,易知DM1,MF1,所以M1,0,0,D2,0,0,A1,0,2,B0,1,2,则MA0,0,2,DA1,0,2,AB1,1,0....................................6分设平面的法向量,MABmx1,y1,z1mMA2z0ur则1,取,则,得;分x11y11m1,1,0.............................8mABx1y103{#{QQABYYYQogggQgAAAAgCQwVyCAAQkBACCKoOAAAEsAABgRNABAA=}#}设平面的法向量DABnx2,y2,z2nDAx2z0r则22,取,则,可得,分z21x22,y22n2,2,1..........10nABx2y20mn422cosm,n,....................................11分mn233由图易知平面MAB与平面DAB夹角为锐角,22所以平面MAB与平面DAB夹角的余弦值为.....................................12分3xx1x121.(1)由题可得f(x)alna,l1:yalnaxa1x1lna......................1分x11g(x),l2:ylogax2,..........................2分xlnax2lnalna1因为l均过原点,所以ax11xlna0xkelna,111lna111因为l均过原点,所以logx0xek,..........................3分2a2lna22elna所以k1k21............................................4分x11x11lnx2(2)由题e,b1b2e1x1lnx21lnx21,......................5分x2x2lnx1记h(x)lnx1(x0),xlnxxh(x),记(x)(lnxx),...........................................6分x211x在0,单调递减,且ln20,(1)10,.................................7分221x0,1使得x00,即lnx0x0,........................................8分24{#{QQABYYYQogggQgAAAAgCQwVyCAAQkBACCKoOAAAEsAABgRNABAA=}#}且hx在0,x0上单调递增,在x0,上单调递减.lnx101mhx0lnx01,∵hx0h3ln2,..........................................10分x0215又∵hx0x0,x025故3ln2m得证............................................12分222.解:(1)f(x)的定义域是(0,)11ax2xa1f(x)a(1)(ax2xa)………………………1分xx2x2x2令u(x)ax2xa当a0时,x0u(x)0………………………分f'(x)0f(x)在(0,)单调递增2当a0时,1-4a21若0,即a时,u(x)02……………………分f'(x)0,f(x)在(0,)单调递减31若0,即0a时,令u(x)02114a2114a2解得x0,x012a22a……4分易得f(x)在(0,x1)单调递减,在(x1,x2)单调递增,在(x2,)单调递减综上所述:当a0时,f(x)在(0,)单调递增1114a2114a2114a2当0a时,f(x)在(0,)单调递减,在(,)单调递增,22a2a2a114a2在(,)单调递减2a1………………………5分当a时,f(x)在(0,)单调递减25{#{QQABYYYQogggQgAAAAgCQwVyCAAQkBACCKoOAAAEsAABgRNABAA=}#}(2)解法一:1xx1xxxlnx由题易得exm(x)mlnxmlnmmlnemmln……分xmmmm6令x有在(,)为增函数g(x)emx(m0),g(x)0………………………7分1x原式等价于g(
山西省运城市2023-2024学年高三上学期11月期中考试 数学答案
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片