如图,当函数x与有一个公共点在直线上,且在该公共点处的吉林地区普通高中2023—2024学年度高三年级第一次模拟考试2yaylogax(x0,y0)yxax0x①切线为,所以有0,①代入②消x0得x0x0,代入yxax0lnalna1,aeax0lna1②数学试题参考答案1e一、单项选择题:本大题共8小题,每小题5分,共40分.ae②中得即x与的公共点为,xeyaylogax(ee)123456780ACBDACBC结合图象得到以下结论:二、多项选择题:本大题共4小题,共20分.全部选对的得5分,部分选对的得2分,有选错的得01(1)当aee时,函数yax与ylogx的图象无公共点(如图1)分.a1(2)当aee时,函数yax与ylogx的图象有一个公共点(如图2)9101112a1(3)当e时,函数x与的图象有两个公共点(如图)BCDACDBCABD1aeyaylogax3(二)当0a1时函数图象呈现以下三种情况三、填空题:本大题共4小题,每小题5分,共20分.其中第15题的第一个空填对得2分,第二个空填对得3分.213.514.544;16.4415.68108(1e,e1)(注:或写成1eme1)图4图5图67.教学建议:请教师们注意结合向量运算掌握三角形的“四心”问题.如图,当函数x与有一个公共点在直线上,且在该点处有公切 5yaylogax(x0,y0)yx9.教学提示:建议教学中指导学生甄别a范围不同时,指、对函数的位置关系.线(斜率为1),(一)当时函数图象呈现以下三种情况xa1a0x①1所以有0,①代入②消x0得x0,x0,代入②中得xax0lnalna1aa0lna1②eaee11即x与的公共点为,1,yaylogax()x0eee结合图象得到以下结论:(4)当e时,函数x与的图象有三个公共点(如图)0aeyaylogax4图1图2图3高三年级第一次模拟考试数学试题参考答案第1页(共8页)22(5)当aee时,函数yax与ylogx的图象有一个公共点(如图5)h(e)0h(e)0a令h(t)t2mte4,则h(1)0或h(1)0(6)当e时,函数x与的图象有一个公共点(如图6)22ea1yaylogaxh(e)0h(e)0故0me41或1e4m015.教学建议:(1)关注《数学课程标准》中分层随机抽样的教学要求.综上,实数m的取值范围是(1e4,e41).(2)学生掌握推导过程.方法二:摘自《数学课程标准》:44②分层随机抽样ee()式化为mt,令h(t)t(t0),tt通过实例,了解分层随机抽样的特点和适用范围,了解分层随机抽样的必要性,掌握各层样本量比例分配的方法.结合具体实例,掌握分层随机抽样的样本均值和样本方差.易知yh(t)在(,0),(0,)上单调递增,(x2)ex且h(1)1e4,h(1)e41,h(e2)h(e2)016.教学提示:当x0且x1时,f(x),f(2)02(x1)其图象大致如图:当0x2且x1时,f(x)0;当x2时,f(x)0.当0me41或1e4m0时,满足故f(x)在(0,1),(1,2)上单调递减,在(2,)上单调递增,e2t1te21或122t2e1t2e当x2时,f(x)取得极小值f(2)e2,综上,实数m的取值范围是(1e4,e41).当x1时,f(x);当x1时,f(x);当x时,f(x).由f(x)解析式可知,f(x)为奇函数.画出f(x)图象大致如下:四、解答题.【解析】令g(x)0得f2(x)mf(x)e40,设tf(x),17(Ⅰ)2····························································1分24a//b3sinxcosxcosx0得关于t的方程tmte0()即24cosx(3sinxcosx)0m4e0恒成立,设()式有两个不等实根t1,t2,3当te2,te2时,即m0,满足题意,cosx0或tanx························································································3分123e2t1te2当1或1,满足题意,x(0,)22t2e1t2e方法一:高三年级第一次模拟考试数学试题参考答案第2页(共8页)x或x···································································································5分f(x)的单调递增区间是[k,k](kZ)·················································10分2636(注:少一个解扣1分,没有角的范围表述扣1分.)(注:单调区间没有写成区间形式扣1分,没有注明k的范围扣1分.)2方法二:a//b3sinxcosxcosx0·························································1分18.【解析】31cos2xsin2x0122(Ⅰ)解:f(x)2(x0)·············································································1分x1sin(2x)··································································································3分62所求切线斜率为f(1)1,切点为(1,2)··································································3分11故所求切线方程为y(2)(x1),即xy10·················································5分x(0,)2x(,)666(注:将切线方程表示成yx1也给分)52x或2x(Ⅱ)方法一:分离变量6666lnx由f(x)ax22x得a在(0,)恒成立···························································6分x或x···································································································5分x262(注:少一个解扣1分,没有角的范围表述扣1分.)lnx令g(x)(x0),则ag(x)maxx211(Ⅱ)f(x)ab3sinxcosxcos2x················································6分12lnx22g(x),g(e)0·················································································8分x331sin2xcos2x当0xe时,g(x)0;当xe时,g(x)022故g(x)在(0,e)上单调递增,在(e,)上单调递减sin(2x)······················································································7分61故当xe时,g(x)取最大值···········································································11分2e令2k2x2k(kZ)26211故a,即a的取值范围是[,)······································································12分2e2ekxk························································································9分361(注:表示成a不扣分)2e高三年级第一次模拟考试数学试题参考答案第3页(共8页)方法二:分类讨论1g(x)2ax,h(x)2x由f(x)ax2x得ax2lnx0在(0,)恒成立····················································6分若a0,当x1时,ax20,lnx0,g(x)h(x),不合题意;·······························7分12ax21令g(x)ax2lnx(x0),则g(x)2axxx若a0,g(x)h(x)①当a0时,g(x)0恒成立,g(x)在(0,)上单调递减,曲线yg(x)与曲线yh(x)有且只有一个公共点,且在该公共点处的切线相同.又g(1)a0,故当x1时,g(x)0,不合题意;设切点坐标为(或直接由g(2)4aln20,不合题意(x0,y0)22或当x1时,ax0,lnx0,g(x)0,不合题意)···············································8分y0ax0lnx0xe0则1解得12ax0a1x②当a0时,令g(x)0得x,02e2a1故当a时,g(x)h(x)112e令g(x)0得x,令g(x)0得0x,2a2a1即a的取值范围是[,).·····················································································12分11故g(x)在(0,)上单调递减,g(x)在(,)上单调递增2e2a2a(教学建议:1.教师应强调第二问的法三比较适合选填题;1111故当x时,g(x)取最小值g()ln0·········································11分2.在教学中,教师应注意强调f(x)ln(kx)(k0)的导函数的相关内容;2a2a22a变式:若x[1,0],xln(12x)(a1)x恒成立,求a的取值范围.11故a,即a的取值范围是[,)2e2e119.【解析】综上所述,a的取值范围是[,)··········································································12分2e(Ⅰ)选择①方法三:数形结合由已知可得:22由f(x)ax2x得axlnx在(0,)恒成立·························································6分当n1时,S
吉林省吉林市2023-2024学年高三上学期第一次模拟考试 数学答案
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片