江西省2023年初中学业水平考试数学试题卷一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1.下列各数中,正整数是()A. B. C. D.2.下列图形中,是中心对称图形的是()A. B. C. D.3.若有意义,则的值可以是()A. B. C. D.4.计算的结果为()A. B. C. D.5.如图,平面镜放置在水平地面上,墙面于点,一束光线照射到镜面上,反射光线为,点在上,若,则的度数为()A. B. C. D.6.如图,点,,,均在直线上,点在直线外,则经过其中任意三个点,最多可画出圆的个数为()A.3个 B.4个 C.5个 D.6个二、填空题(本大题共6小题,每小题3分,共18分)7.单项式的系数为______.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.9.计算:(a+1)2﹣a2=_____.10.将含角的直角三角板和直尺按如图所示的方式放置,已,点,表示的刻度分别为,则线段的长为_______cm.11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点,,在同一水平线上,和均为直角,与相交于点.测得,则树高______m.12.如图,在中,,将绕点逆时针旋转角()得到,连接,.当为直角三角形时,旋转角的度数为_______.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,,平分.求证:.14.如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角,使点C在格点上;(2)在图2中的线段上作点Q,使最短.15.化简.下面是甲、乙两同学的部分运算过程:解:原式……解:原式……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,已知直线与反比例函数的图象交于点,与y轴交于点B,过点B作x轴的平行线交反比例函数的图象于点C.(1)求直线和反比例函数图象的表达式;(2)求的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.如图1是某红色文化主题公园内雕塑,将其抽象成加如图2所示的示意图,已知点,,,均在同一直线上,,测得.(结果保小数点后一位)(1)连接,求证:;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:)20.如图,在中,,以为直径的与相交于点D,E为上一点,且.(1)求的长;(2)若,求证:为的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下80.7160.8280.934m及以上46n合计200高中学生视力情况统计图(1)_______,_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到为视力不良.若该区有26000名初中学生,估计该区有多少名初中学生视力不良?并对视力保护提出一条合理化建议.22.课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在中,对角线,垂足为.求证:是菱形.(2)知识应用:如图,中,对角线和相交于点,.①求证:菱形;②延长至点,连接交于点,若,求的值.六、解答题(本大题共12分)23.综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系(1)初步感知:如图1,当点P由点C运动到点B时,①当时,_______.②S关于t的函数解析式为_______.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①_______;②当时,求正方形面积.
精品解析:2023年江西省中考数学真题(原卷版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片