2022年湖北省黄冈市中考数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卡上把正确答案的代号涂黑)1.﹣5的绝对值是()A5 B.﹣5 C. D.2.某几何体的三视图如图所示,则该几何体是()A.圆锥 B.三棱锥 C.三棱柱 D.四棱柱3.北京冬奥会开幕式的冰雪五环由我国航天科技建造,该五环由21000个LED灯珠组成,夜色中就像闪闪发光的星星,把北京妆扮成了奥运之城,将数据21000用科学记数法表示为()A.21×103 B.2.1×104 C.2.1×105 D.0.21×1064.下列图形中,对称轴最多的是()A.等边三角形 B.矩形 C.正方形 D.圆5.下列计算正确的是()A.a2•a4=a8 B.(-2a2)3=-6a6 C.a4÷a=a3 D.2a+3a=5a26.下列调查中,适宜采用全面调查方式的是()A.检测“神舟十四号”载人飞船零件的质量 B.检测一批LED灯的使用寿命C.检测黄冈、孝感、咸宁三市的空气质量 D.检测一批家用汽车的抗撞击能力7.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则弧AD的长为()A. B. C. D.28.如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A4 B.3 C.2 D.1二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上)9.若分式有意义,则x的取值范围是________.10.如图,直线a∥b,直线c与直线a,b相交,若∠1=54°,则∠3=________度.11.已知一元二次方程x2﹣4x+3=0的两根为x1、x2,则x1•x2=_____.12.如图,已知,,请你添加一个条件________,使.13.小聪和小明两个同学玩“石头,剪刀、布“的游戏,随机出手一次是平局的概率是________.14.如图,有甲乙两座建筑物,从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离.已知乙建筑物的高度为,则甲建筑物的高度为________.(,,,结果保留整数).15.勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是________(结果用含m的式子表示).16.如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)17.先化简,再求值:4xy-2xy-(-3xy),其中x=2,y=-1.18.某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?19.为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t(单位:分钟).按照完成时间分成五组:A组“t≤45”,B组“45<t≤60”,C组“60<t≤75”,D组“75<t≤90”,E组“t>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是,请补全条形统计图;(2)在扇形统计图中,B组的圆心角是度,本次调查数据的中位数落在组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.20.如图,已知一次函数y1=kx+b的图像与函数y2=(x>0)的图像交于A(6,-),B(,n)两点,与y轴交于点C,将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图像,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为.21.如图,是的外接圆,是的直径,与过点的切线平行,,相交于点.(1)求证:;(2)若,求的长.22.为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.23.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.(1)尝试证明:请参照小慧提供的思路,利用图2证明=;(2)应用拓展:如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.①若AC=1,AB=2,求DE的长;②若BC=m,∠AED=,求DE的长(用含m,的式子表示).24.抛物线y=x2-4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.(1)直接写出点B和点D坐标;(2)如图1,连接OD,P为x轴上动点,当tan∠PDO=时,求点P的坐标;(3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.
精品解析:2022年湖北省孝感市中考数学试卷(原卷版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片