2020年贵州省黔西南州中考数学试卷一、选择题1.2的倒数是( )A.2 B. C. D.-2【答案】B【解析】【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案.【详解】∵2×=1,∴2的倒数是,故选B.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2.某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106 B.3.6×105 C.3.6×106 D.36×105【答案】B【解析】【分析】本题考查了科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:360000=3.6×105,故选B.【点睛】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A. B. C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可.【详解】解:从上面看可得四个并排的正方形,如图所示:故选D.【点睛】本题考查了三视图的知识,.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.4.下列运算正确的是()A.a3+a2=a5 B.a3÷a=a3 C.a2•a3=a5 D.(a2)4=a6【答案】C【解析】【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项分析判断后即可求解.【详解】A、a3、a2不是同类项,不能合并,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)4=a8,故D错误.故选:C.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5 B.5,4 C.4,4 D.5,5【答案】A【解析】【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【详解】解:本题考查了求一组数据的中位数,众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.出现次数最多的数据叫做这组数据的众数.将4,3,5,5,2,5,3,4,1按由小到大的顺序排列为:1,2,3,3,4,4,5,5,5,处在最中间的数是4,所以中位数是4,其中5出现了3次,出现次数最多,所以众数是5,故选:A.【点睛】本题考查了众数、中位数的知识,解答本题的关键是掌握众数及中位数的定义.6.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为()A.37° B.43° C.53° D.54°【答案】C【解析】【分析】先根据平行线性质得出,再根据即可求解.【详解】∵AB∥CD,∴∠2=∠3=37°,∵∠FEG=90°,∴∴∠1=90°-∠3=90°-37°=53°故选:C.【点睛】本题主要考查平行线的性质和平角的定义,掌握平行线的性质是解题的关键.7.如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米 B.4sinα米 C.米 D.4cosα米【答案】B【解析】【分析】过点A′作A′C⊥AB于点C,根据锐角三角函数的定义即可求出答案.【详解】解:如答图,过点A′作A′C⊥AB于点C.在Rt△OCA′,sinα=,所以A′C=A′O·sinα.由题意得A′O=AO=4,所以A′C=4sinα,因此本题选B.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知关于x的一元二次方程(m-1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2 B.m≤2 C.m<2且m≠1 D.m≤2且m≠1【答案】D【解析】【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【详解】解:因为关于x的一元二次方程x2-2x+m=0有实数根,所以b2-4ac=22-4(m-1)×1≥0,解得m≤2.又因为(m-1)x2+2x+1=0是一元二次方程,所以m-1≠0.综合知,m的取值范围是m≤2且m≠1,因此本题选D.【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,找出关于m的一元一次不等式组是解题的关键.9.如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y=(k≠0)的图象上,则反比例函数的解析式为()A.y= B.y= C.y= D.y=【答案】B【解析】【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【详解】解:因为在菱形ABOC中,∠A=60°,菱形边长为2,所以OC=2,∠COB=60°.如答图,过点C作CD⊥OB于点D,则OD=OC·cos∠COB=2×cos60°=2×=1,CD=OC·sin∠COB=2×sin60°=2×=.因为点C在第二象限,所以点C的坐标为(-1,).因为顶点C在反比例函数y═的图象上,所以=,得k=,所以反比例函数的解析式为y=,因此本题选B.【点睛】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标.10.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4) B.AB=AD C.a= D.OC•OD=16【答案】D【解析】【分析】由抛物线y=ax2+bx+4交y轴于点A,可得点A的坐标,然后由抛物线的对称性可得点B的坐标,由点B关于直线AC的对称点恰好落在线段OC上,可知∠ACO=∠ACB,再结合平行线的性质可判断∠BAC=∠ACB,从而可知AB=AD;过点B作BE⊥x轴于点E,由勾股定理可得EC的长,则点C坐标可得,然后由对称性可得点D的坐标,则OC•OD的值可计算;由勾股定理可得AD的长,由交点式可得抛物线的解析式,根据以上计算或推理,对各个选项作出分析即可.【详解】解:因为抛物线y=ax2+bx+4交y轴于点A,所以A(0,4).因为对称轴为直线x=,AB∥x轴,所以B(5,4),选项A正确,不符合题意.如答图,过点B作BE⊥x轴于点E,则BE=4,AB=5.因为AB∥x轴,所以∠BAC=∠ACO.因为点B关于直线AC的对称点恰好落在线段OC上,所以∠ACO=∠ACB,所以∠BAC=∠ACB,所以BC=AB=5.在Rt△BCE中,由勾股定理得EC=3,所以C(8,0),因为对称轴为直线x=,所以D(-3,0).在Rt△ADO中,OA=4,OD=3,所以AD=5,所以AB=AD,选项B正确,不符合题意.设y=ax2+bx+4=a(x+3)(x-8),将A(0,4)代入得4=a(0+3)(0-8),解得a=,选项C正确,不符合题意.因为OC=8,OD=3,所以OC•OD=24,选项D错误,符合题意,因此本题选D.【点睛】本题考查了二次函数的性质、等腰三角形的判定与性质及勾股定理,熟练掌握二次函数的相关性质并数形结合是解题的关键.二、填空题11.多项式分解因式的结果是______.【答案】【解析】【分析】先提出公因式a,再利用平方差公式因式分解.【详解】解:a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).【点睛】本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.12.若7axb2与-a3by和为单项式,则yx=________.【答案】8【解析】【分析】直接利用合并同类项法则进而得出x,y的值,即可得出答案.【详解】解:因为7axb2与-a3by的和为单项式,所以7axb2与-a3by是同类项,所以x=3,y=2,所以yx=23=8,因此本题答案为8.【点睛】此题主要考查了单项式,正确得出x,y的值是解题关键.13.不等式组的解集为________.【答案】-6<x≤13【解析】【分析】根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交集,则不等式无解.【详解】,解得在坐标轴上表示为:∴不等式组的解集为﹣6<≤13故答案为:﹣6<≤13.【点睛】本题考查了一元一次不等式组的解题问题,熟练掌握其解法及表示方法是解题的关键.14.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=,则BD的长度为________.【答案】【解析】【分析】首先证明DB=AD=2CD,然后再由条件BC=可得答案.【详解】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD.∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD.∵BC=,∴CD+2CD=,∴CD=,∴DB=,故答案为:.【点睛】此题主要考查了含30°角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.15.如图,正比例函数的图象与一次函数y=-x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是________.【答案】y=-2x【解析】【分析】首先将点P的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解.【详解】∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=-x+1上,∴2=-x+1,解得x=-1,∴点P的坐标为(-1,2).设正比例函数解析式为y=kx,把P(-1,2)代入得2=-k,解得k=-2,∴正比例函数解析式为y=-2x,故答案为:y=-2x.【点睛】本题考查了用待定系数法求正比例函数解析式,及两函数交点问题的处理能力,熟练的进行点与线之间的转化计算是解题的关键.16.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为________.【答案】【解析】【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【详解】解:如答图,由第一次折叠得EF⊥AD,AE=DE,∴∠AEF=90°,AD=2AE.∵四边形ABCD是矩形,∴∠D=∠DAB=90°,∴∠AEF=∠D,∴EF∥CD,∴△AEN∽△ADM,∴==,∴AN=AM,∴AN=MN,又由第二次折叠得∠AGM=∠D=90°,∴NG=AM,∴AN=NG,∴∠2=∠4.由第二次折叠得∠1=∠2,∴∠1=∠4.∵AB∥CD,EF∥CD,∴EF∥AB,∴∠3=∠4,∴∠1=∠2=∠3.∵∠1+∠2+∠3=∠DAB=90°,∴∠1=∠2=∠3=30°.∵四边形ABCD是矩形,∴AD=BC=2.由第二次折叠得AG=AD=2.由第一次折叠得AE=AD=×2=1.在Rt△AEG中,由勾股定理得EG===,故答案为:.【点睛】此题主要考查了翻折变换的性质以及矩形的性质,正确得出∠2=∠4是解题关键.17.如图,是一个运算程
精品解析:2020年贵州黔西南州中考数学试题(解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片