十年(2014-2023)高考物理真题分项汇编专题15 圆周运动(二)(学生版)-(全国通用)

2023-11-14 · U1 上传 · 10页 · 821.4 K

专题15圆周运动(二)28.(2017·浙江)在G20峰会“最忆是杭州”的文化文艺演出中,芭蕾舞演员保持如图所示姿势原地旋转,此时手臂上A、B两点角速度大小分别为、,线速度大小分别为、,则( )A. B. C. D.29.(2018·浙江)A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同时间内,它们通过的路程之比是4:3,运动方向改变的角度之比是3:2,则它们( )A.线速度大小之比为4:3 B.角速度大小之比为3:4C.圆周运动的半径之比为2:1 D.向心加速度大小之比为1:230.(2018·浙江)如图所示,照片中的汽车在水平路面上做匀速圆周运动,已知图中双向四车道的总宽度约为15m,内径75m,假设汽车受到的最大静摩擦力等于车重的0.7倍,则运动的汽车A.所受的合力可能为零B.只受重力和地面的支持力作用C.最大速度不能超过25m/sD.所需的向心力由重力和支持力的合力提供31.(2017·全国)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环。小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力( )A.一直不做功B.一直做正功C.始终指向大圆环圆心D.始终背离大圆环圆心32.(2016·上海)风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为r,每转动n圈带动凸轮圆盘转动一圈.若某段时间Δt内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片A.转速逐渐减小,平均速率为B.转速逐渐减小,平均速率为C.转速逐渐增大,平均速率为D.转速逐渐增大,平均速率为33.(2015·天津)未来的星际航行中,宇航员长期处于完全失重状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小三、填空题34.(2023·上海)假设月球绕地球做匀速圆周运动的周期为T,月球到地心的距离为r,则月球的线速度v=_____________;若已月球的质量为m,则地球对月球的引力F=_____________。35.(2014·天津)半径为R的水平圆盘绕过圆心O的竖直轴匀速转动,A为圆盘边缘上一点,在O的正上方有一个可视为质点的小球以初速度v水平抛出时,半径OA方向恰好与v的方向相同,如图所示,若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度为h=,圆盘转动的角速度大小为.36.(2014·上海)动能相等的两人造地球卫星A、B的轨道半径之比,它们的角速度之比____,质量之比_____.四、解答题37.(2023·江苏)“转碟”是传统的杂技项目,如图所示,质量为m的发光物体放在半径为r的碟子边缘,杂技演员用杆顶住碟子中心,使发光物体随碟子一起在水平面内绕A点做匀速圆周运动。当角速度为时,碟子边缘看似一个光环。求此时发光物体的速度大小和受到的静摩擦力大小f。  38.(2022·福建)清代乾隆的《冰嬉赋》用“躄躠”(可理解为低身斜体)二字揭示了滑冰的动作要领。短道速滑世界纪录由我国运动员武大靖创造并保持。在其创造纪录的比赛中,(1)武大靖从静止出发,先沿直道加速滑行,前用时。该过程可视为匀加速直线运动,求此过程加速度大小;(2)武大靖途中某次过弯时的运动可视为半径为的匀速圆周运动,速度大小为。已知武大靖的质量为,求此次过弯时所需的向心力大小;(3)武大靖通过侧身来调整身体与水平冰面的夹角,使场地对其作用力指向身体重心而实现平稳过弯,如图所示。求武大靖在(2)问中过弯时身体与水平面的夹角的大小。(不计空气阻力,重力加速度大小取,、、、)39.(2022·辽宁)2022年北京冬奥会短道速滑混合团体2000米接力决赛中,我国短道速滑队夺得中国队在本届冬奥会的首金。(1)如果把运动员起跑后进入弯道前的过程看作初速度为零的匀加速直线运动,若运动员加速到速度时,滑过的距离,求加速度的大小;(2)如果把运动员在弯道滑行的过程看作轨道为半圆的匀速圆周运动,如图所示,若甲、乙两名运动员同时进入弯道,滑行半径分别为,滑行速率分别为,求甲、乙过弯道时的向心加速度大小之比,并通过计算判断哪位运动员先出弯道。40.(2022·浙江)如图所示,处于竖直平面内的一探究装置,由倾角=37°的光滑直轨道AB、圆心为O1的半圆形光滑轨道BCD、圆心为O2的半圆形光滑细圆管轨道DEF、倾角也为37°的粗糙直轨道FG组成,B、D和F为轨道间的相切点,弹性板垂直轨道固定在G点(与B点等高),B、O1、D、O2和F点处于同一直线上。已知可视为质点的滑块质量m=0.1kg,轨道BCD和DEF的半径R=0.15m,轨道AB长度,滑块与轨道FG间的动摩擦因数,滑块与弹性板作用后,以等大速度弹回,sin37°=0.6,cos37°=0.8。滑块开始时均从轨道AB上某点静止释放,()(1)若释放点距B点的长度l=0.7m,求滑块到最低点C时轨道对其支持力FN的大小;(2)设释放点距B点的长度为,滑块第一次经F点时的速度v与之间的关系式;(3)若滑块最终静止在轨道FG的中点,求释放点距B点长度的值。41.(2021·湖北)如图所示,一圆心为O、半径为R的光滑半圆弧轨道固定在竖直平面内,其下端与光滑水平面在Q点相切。在水平面上,质量为m的小物块A以某一速度向质量也为m的静止小物块B运动。A、B发生正碰后,B到达半圆弧轨道最高点时对轨道压力恰好为零,A沿半圆弧轨道运动到与O点等高的C点时速度为零。已知重力加速度大小为g,忽略空气阻力。(1)求B从半圆弧轨道飞出后落到水平面的位置到Q点的距离;(2)当A由C点沿半圆弧轨道下滑到D点时,OD与OQ夹角为θ,求此时A所受力对A做功的功率;(3)求碰撞过程中A和B损失的总动能。42.(2020·江苏)如图所示,鼓形轮的半径为R,可绕固定的光滑水平轴O转动。在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m的小球,球与O的距离均为。在轮上绕有长绳,绳上悬挂着质量为M的重物。重物由静止下落,带动鼓形轮转动。重物落地后鼓形轮匀速转动,转动的角速度为。绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g。求:(1)重物落地后,小球线速度的大小v;(2)重物落地后一小球转到水平位置A,此时该球受到杆的作用力的大小F;(3)重物下落的高度h。43.(2020·天津)长为l的轻绳上端固定,下端系着质量为的小球A,处于静止状态。A受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点。当A回到最低点时,质量为的小球B与之迎面正碰,碰后A、B粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点。不计空气阻力,重力加速度为g,求(1)A受到的水平瞬时冲量I的大小;(2)碰撞前瞬间B的动能至少多大?44.(2020·浙江)小明将如图所示的装置放在水平地面上,该装置由弧形轨道、竖直圆轨道、水平直轨道和倾角的斜轨道平滑连接而成。质量的小滑块从弧形轨道离地高处静止释放。已知,,滑块与轨道和间的动摩擦因数均为,弧形轨道和圆轨道均可视为光滑,忽略空气阻力。(1)求滑块运动到与圆心O等高的D点时对轨道的压力;(2)通过计算判断滑块能否冲出斜轨道的末端C点;(3)若滑下的滑块与静止在水平直轨道上距A点x处的质量为的小滑块相碰,碰后一起运动,动摩擦因数仍为0.25,求它们在轨道上到达的高度h与x之间的关系。(碰撞时间不计,,)45.(2019·天津)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功.航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示.为了便于研究舰载机的起飞过程,假设上翘甲板是与水平甲板相切的一段圆弧,示意如图2,长,水平投影,图中点切线方向与水平方向的夹角().若舰载机从点由静止开始做匀加速直线运动,经到达点进入.已知飞行员的质量,,求(1)舰载机水平运动的过程中,飞行员受到的水平力所做功;(2)舰载机刚进入时,飞行员受到竖直向上的压力多大.46.(2018·浙江)如图所示,一轨道由半径为2m的四分之一竖直圆弧轨道AB和长度可以调节的水平直轨道BC在B点平滑连接而成.现有一质量为0.2kg的小球从A点无初速度释放,经过圆弧上的B点时,传感器测得轨道所受压力大小为3.6N,小球经过BC段所受阻力为其重力的0.2倍,然后从C点水平飞离轨道,落到水平面上的P点,P、C两点间的高度差为3.2m.小球运动过程中可以视为质点,且不计空气阻力.(1)求小球运动至B点的速度大小以及小球在圆弧轨道上克服摩擦力所做的功;(2)为使小球落点P与B点的水平距离最大,求BC段的长度;(3)小球落到P点后弹起,与地面多次碰撞后静止.假设小球每次碰撞机械能损失75%,碰撞前后速度方向与地面的夹角相等.求小球从C点飞出后静止所需的时间.47.(2017·浙江)如图1所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图2的模型。倾角为的直轨道AB、半径R=10m的光滑竖直圆轨道和倾角为的直轨道EF,分别通过水平光滑衔接轨道BC、平滑连接,另有水平减速直轨道FG与EF平滑连接,E、G间的水平距离l=40m。现有质量m=500kg的过山车,从高h=40m的A点静止下滑,经最终停在G点,过山车与轨道AB、EF的动摩擦因数均为,与减速直轨道FG的动摩擦因数均为,过山车可视为质点,运动中不脱离轨道,求(1)过山车运动至圆轨道最低点C时的速度大小;(2)过山车运动至圆轨道最高点D时对轨道的作用力;(3)减速直轨道FG的长度x。(已知,)48.(2018·全国)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道PA在A点相切。BC为圆弧轨道的直径。O为圆心,OA和OB之间的夹角为α,,一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零。重力加速度大小为g。求:(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间。49.(2015·广东)如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5m,物块A以v0=6m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨道上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1kg(重力加速度g取10m/s2;A、B视为质点,碰撞时间极短)。(1)求A滑过Q点时的速度大小v和受到的弹力大小F;(2)若碰后AB最终停止在第k个粗糙段上,求k的数值;(3)求碰后AB滑至第n个(n<k)光滑段上的速度vn与n的关系式。50.(2015·江苏)一转动装置如图所示,四根轻杆OA、OC、AB和CB与两小球以及一小环通过铰链连接,轻杆长均为l,球和环的质量均为m,O端固定在竖直的轻质转轴上,套在转轴上的轻质弹簧连接在O与小环之间,原长为L,装置静止时,弹簧长为,转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g,求(1)弹簧的劲度系数k;(2)AB杆中弹力为零时,装置转动的角速度;(3)弹簧长度从缓慢缩短为的过程中,外界对转动装置所做的功W.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐