2011年湖南高考理科数学试题及答案

2023-10-27 · U3 上传 · 18页 · 1.3 M

2011年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)参考公式:(1),其中为两个事件,且,(2)柱体体积公式,其中为底面面积,为高。(3)球的体积公式,其中为求的半径。一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•湖南)若a,b∈R,i为虚数单位,且(a+i)i=b+i则( ) A.a=1,b=1B.a=﹣1,b=1C.a=﹣1,b=﹣1D.a=1,b=﹣1 2.(5分)(2011•湖南)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ) A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分又不必要条件 3.(5分)(2011•湖南)设如图是某几何体的三视图,则该几何体的体积为( ) A.9π+42B.36π+18C.D. 4.(5分)(2011•湖南)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,.P(K2≥k)0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是( ) A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” C.有99%以上的把握认为“爱好该项运动与性别有关” D.有99%以上的把握认为“爱好该项运动与性别无关” 5.(5分)(2011•湖南)设双曲线的渐近线方程为3x±2y=0,则a的值为( ) A.4B.3C.2D.1 6.(5分)(2011•湖南)由直线与曲线y=cosx所围成的封闭图形的面积为( ) A.B.1C.D. 7.(5分)(2011•湖南)设m>1,在约束条件下,目标函数Z=X+my的最大值小于2,则m的取值范围为( ) A.(1,)B.(,+∞)C.(1,3)D.(3,+∞) 8.(5分)(2011•湖南)设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为( ) A.1B.C.D. 二、填空题(共8小题,每小题5分,满分35分)9.(5分)(2011•湖南)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ﹣sinθ)+1=0,则C1与C2的交点个数为 _________ . 10.(5分)(2011•湖南)设x,y∈R,且xy≠0,则的最小值为 _________ . 11.(2011•湖南)如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交与点F,则AF的长为 _________ . 12.(5分)(2011•湖南)设Sn是等差数列{an}(n∈N*)的前n项和,且a1=1,a4=7,则S9= _________ . 13.(5分)(2011•湖南)若执行如图所示的框图,输入x1=1,,则输出的数等于 _________ . 14.(5分)(2011•湖南)在边长为1的正三角形ABC中,设,则= _________ . 15.(5分)(2011•湖南)如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该院内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)= _________ ;(2)P(B|A)= _________ . 16.(5分)(2011•湖南)对于n∈N+,将n表示n=a0×2k+a1×2k﹣1+a2×2k﹣2+…+ak﹣1×21+ak×20,当i=0时,ai=1,当1≤i≤k时,a1为0或1.记I(n)为上述表示中ai为0的个数(例如:1=1×20,4=1×22+0×21+0×20,故I(1)=0,I(4)=2),则(1)I(12)= _________ ;(2)= _________ . 三、解答题(共6小题,满分75分)17.(12分)(2011•湖南)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;(2)求sinA﹣cos(B+)的最大值,并求取得最大值时角A、B的大小. 18.(12分)(2011•湖南)某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(Ⅰ)求当天商品不进货的概率;(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望. 19.(12分)(2011•湖南)如图,在圆锥PO中,已知PO=,⊙O的直径AB=2,C是的中点,D为AC的中点.(Ⅰ)证明:平面POD⊥平面PAC;(Ⅱ)求二面角B﹣PA﹣C的余弦值. 20.(13分)(2011•湖南)如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v﹣c|×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=时.(Ⅰ)写出y的表达式(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少. 21.(13分)(2011•湖南)如图,椭圆C1:=1(a>b>0)的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.(Ⅰ)求C1,C2的方程;(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交与D,E.(i)证明:MD⊥ME;(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=?请说明理由. 22.(13分)(2011•湖南)已知函数f(x)=x3,g(x)=x+.(Ⅰ)求函数h(x)=f(x)﹣g(x)的零点个数.并说明理由;(Ⅱ)设数列{an}(n∈N*)满足a1=a(a>0),f(an+1)=g(an),证明:存在常数M,使得对于任意的n∈N*,都有an≤M. 一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的。1.若,为虚数单位,且,则()A.B.C.D.答案:D2.设,,则“”是“”则()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件答案:A解析:因“”,即,满足“”,反之“”,则,或,不一定有“”。3.设图一是某几何体的三视图,则该几何体的体积为()A.B.C.D.答案:B解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积。4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是()A.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别无关”C.有以上的把握认为“爱好该项运动与性别有关”D.有以上的把握认为“爱好该项运动与性别有关”答案:C解析:由,而,故由独立性检验的意义可知选C.5.设双曲线的渐近线方程为,则的值为()A.4B.3C.2D.1答案:C解析:由双曲线方程可知渐近线方程为,故可知。6.由直线与曲线所围成的封闭图形的面积为()A.B.1C.D.答案:D解析:由定积分知识可得,故选D。7.设,在约束条件下,目标函数的最大值小于2,则的取值范围为()A.B.C.D.答案:A解析:画出可行域,可知在点取最大值,由解得。8.设直线与函数的图像分别交于点,则当达到最小时的值为()A.1B.C.D.答案:D解析:由题,不妨令,则,令解得,因时,,当时,,所以当时,达到最小。即。二填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号的横线上。一、选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系中,曲线C1的参数方程为(为参数)在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,曲线的方程为,则与的交点个数为。答案:2解析:曲线,,由圆心到直线的距离,故与的交点个数为2.10.设,则的最小值为。答案:9解析:由柯西不等式可知。11.如图2,是半圆周上的两个三等分点,直径,,垂足为D,与相交与点F,则的长为。答案:解析:由题可知,,,得,,又,所以.二、必做题(12~16题)12、设是等差数列的前项和,且,则答案:25解析:由可得,所以。13、若执行如图3所示的框图,输入,则输出的数等于。答案:解析:由框图的算法功能可知,输出的数为三个数的方差,则。14、在边长为1的正三角形中,设,则。答案:解析:由题,,所以。15、如图4,是以为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形内”,B表示事件“豆子落在扇形(阴影部分)内”,则(1);(2)答案:(1);(2)解析:(1)由几何概型概率计算公式可得;(2)由条件概率的计算公式可得。16、对于,将表示为,当时,,当时,为0或1.记为上述表示中为0的个数,(例如,:故)则(1)(2)答案:(1)2;(2)解析:(1)因,故;(2)在2进制的位数中,没有0的有1个,有1个0的有个,有2个0的有个,……有个0的有个,……有个0的有个。故对所有2进制为位数的数,在所求式中的的和为:。又恰为2进制的最大7位数,所以。三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。17.(本小题满分12分)在中,角所对的边分别为,且满足.(I)求角的大小;(II)求的最大值,并求取得最大值时角的大小.解析:(I)由正弦定理得因为所以(II)由(I)知于是取最大值2.综上所述,的最大值为2,此时18.某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。(Ⅰ)求当天商品不进货的概率;(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。解析:(I)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量1件”)=。(II)由题意知,的可能取值为2,3.;故的分布列为23的数学期望为。19.(本题满分12分)如图5,在圆锥中,已知的直径的中点.(I)证明:(II)求二面角的余弦值.解:(I)连接,因为,为的中点,所以.又因为内的两条相交直线,所以而,所以。(II)在平面中,过作于,由(I)知,,所以又所以.在平面中,过作连接,则有,从而,所以是二面角的平面角.在在在在,所以。故二面角的余弦值为。20.如图6,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐