2013年浙江高考数学(理科)试卷(含答案)

2023-10-27 · U3 上传 · 19页 · 665 K

2013年浙江高考数学试卷理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江)已知i是虚数单位,则(﹣1+i)(2﹣i)=( ) A.﹣3+iB.﹣1+3iC.﹣3+3iD.﹣1+i 2.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁RS)∪T=( ) A.(﹣2,1]B.(﹣∞,﹣4]C.(﹣∞,1]D.[1,+∞) 3.(5分)(2013•浙江)已知x,y为正实数,则( ) A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx•2lgy C.2lgx•lgy=2lgx+2lgyD.2lg(xy)=2lgx•2lgy 4.(5分)(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的( ) A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 5.(5分)(2013•浙江)某程序框图如图所示,若该程序运行后输出的值是,则( ) A.a=4B.a=5C.a=6D.a=7 6.(5分)(2013•浙江)已知,则tan2α=( ) A.B.C.D. 7.(5分)(2013•浙江)设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则( ) A.∠ABC=90°B.∠BAC=90°C.AB=ACD.AC=BC 8.(5分)(2013•浙江)已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则( ) A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值 C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值 9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( ) A.B.C.D. 10.(5分)(2013•浙江)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( ) A.平面α与平面β垂直 B.平面α与平面β所成的(锐)二面角为45° C.平面α与平面β平行 D.平面α与平面β所成的(锐)二面角为60° 二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)设二项式的展开式中常数项为A,则A= _________ . 12.(4分)(2013•浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 _________ cm3. 13.(4分)(2013•浙江)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k= _________ . 14.(4分)(2013•浙江)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有 _________ 种(用数字作答) 15.(4分)(2013•浙江)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于 _________ . 16.(4分)(2013•浙江)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC= _________ . 17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于 _________ . 三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|. 19.(14分)(2013•浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.,求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c. 20.(15分)(2013•浙江)如图,在四面体A﹣BCD中,AD⊥平面BCD,.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小. 21.(15分)(2013•浙江)如图,点P(0,﹣1)是椭圆的一个顶点,C1的长轴是圆的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于两点,l2交椭圆C1于另一点D(1)求椭圆C1的方程;(2)求△ABD面积取最大值时直线l1的方程. 22.(14分)(2013•浙江)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值. 2013年浙江省高考数学试卷(理科)参考答案与试题解析 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江)已知i是虚数单位,则(﹣1+i)(2﹣i)=( ) A.﹣3+iB.﹣1+3iC.﹣3+3iD.﹣1+i考点:复数代数形式的乘除运算.2710664专题:计算题.分析:直接利用两个复数代数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果.解答:解:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,故选B.点评:本题主要考查两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题. 2.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁RS)∪T=( ) A.(﹣2,1]B.(﹣∞,﹣4]C.(﹣∞,1]D.[1,+∞)考点:交、并、补集的混合运算.2710664分析:先根据一元二次不等式求出集合T,然后求得∁RS,再利用并集的定义求出结果.解答:解:∵集合S={x|x>﹣2},∴∁RS={x|x≤﹣2}由x2+3x﹣4≤0得:T={x|﹣4≤x≤1},故(∁RS)∪T={x|x≤1}故选C.点评:此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型.在求补集时注意全集的范围. 3.(5分)(2013•浙江)已知x,y为正实数,则( ) A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx•2lgy C.2lgx•lgy=2lgx+2lgyD.2lg(xy)=2lgx•2lgy考点:有理数指数幂的化简求值;对数的运算性质.2710664专题:计算题.分析:直接利用指数与对数的运算性质,判断选项即可.解答:解:因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.点评:本题考查指数与对数的运算性质,基本知识的考查. 4.(5分)(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的( ) A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.2710664专题:三角函数的图像与性质.分析:φ=⇒f(x)=Acos(ωx+)⇒f(x)=Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数⇒f(0)=0⇒φ=kπ+,k∈Z.所以“f(x)是奇函数”是“φ=”必要不充分条件.解答:解:若φ=,则f(x)=Acos(ωx+)⇒f(x)=Asin(ωx)(A>0,ω>0,x∈R)是奇函数;若f(x)是奇函数,⇒f(0)=0,∴f(0)=Acos(ω×0+φ)=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ=“f(x)是奇函数”是“φ=”必要不充分条件.故选B.点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用. 5.(5分)(2013•浙江)某程序框图如图所示,若该程序运行后输出的值是,则( ) A.a=4B.a=5C.a=6D.a=7考点:程序框图.2710664专题:图表型.分析:根据已知流程图可得程序的功能是计算S=1++…+的值,利用裂项相消法易得答案.解答:解:由已知可得该程序的功能是计算并输出S=1++…+=1+1﹣=2﹣.若该程序运行后输出的值是,则2﹣=.∴a=4,故选A.点评:本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键. 6.(5分)(2013•浙江)已知,则tan2α=( ) A.B.C.D.考点:二倍角的正切;同角三角函数间的基本关系.2710664专题:三角函数的求值.分析:由题意结合sin2α+cos2α=1可解得sinα,和cosα,进而可得tanα,再代入二倍角的正切公式可得答案.解答:解:∵,又sin2α+cos2α=1,联立解得,或故tanα==,或tanα=3,代入可得tan2α===﹣,或tan2α===故选C点评:本题考查二倍角的正切公式,涉及同角三角函数的基本关系,属中档题. 7.(5分)(2013•浙江)设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则( ) A.∠ABC=90°B.∠BAC=90°C.AB=ACD.AC=BC考点:平面向量数量积的运算.2710664专题:计算题;平面向量及应用.分析:以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0),然后由题意可写出,,,,然后由结合向量的数量积的坐标表示可得关于x的二次不等式,结合二次不等式的知识可求a,进而可判断解答:解:以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)∴=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)∵恒有∴(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立∴△=(a+2)2﹣4(a+1)≤0即△=a2≤0∴a=0,即C在AB的垂直平分线上∴AC=BC故△ABC为等腰三角形故选D点评:本题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力 8.(5分)(2013•浙江)已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则( ) A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值 C.当k=2时,f(x)在

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐