成都石室中学2024-2025年度下期高2024届二诊模拟考试数学试题(理)(A卷)参考答案一、选择题:11.已知复数z(其中i为虚数单位),则z的虚部是1i1111A.B.iC.D.i222211i11.Az,所以z的虚部是.1i2212.若集合A1,2,By|yx2,则aA是aB的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.AB0,,则A是B的真子集,则aA是aB的充分不必要条件.3.如图是根据某校高三8位同学的数学月考成绩(单位:分)画出的茎叶图,其中左边的数字从左到右分别表示学生数学月考成绩的百位数字和十位数字,右边的数字表示学生数学月考成绩的个位数字,则下列结论正确的是11877A.这8位同学数学月考成绩的极差是1412513B.这8位同学数学月考成绩的中位数是1221312C.这8位同学数学月考成绩的众数是118D.这8位同学数学月考成绩的平均数是1243.B对于选项A,极差是13211715,故A错误;121123对于选项B,中位数是122,故B正确;2对于选项C,众数是117,故C错误;对于选项D,平均数是123,故D错误,故选B.4.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,则这个几何体的体积是3579A.B.C.D.23324.A还原成直观图后,几何体由一个圆柱和八分之三个球组成,故这个几433何体的体积V×12×1×13×.3825.已知数列{}an为等差数列,且a2a3a6a9a1010,则a4a8的值为A.2B.4C.6D.81学科网(北京)股份有限公司5.B因为a2a3a6a9a1010,由等差数列的性质,得5a610,a62,所以a4a84.116.若a,b是正实数,且1,则ab的最小值为3ab2a4b42A.B.C.1D.25311116.A因为ab3ab2a4b×13ab2a4b×553ab2a4b12a4b3ab43142,当且仅当a,b时取等号,所以ab的最小值为.53ab2a4b55557.当0x时,关于x的不等式(2asinxcos2x3)(sinxx)0有解,则a的最小值是2A.2B.3C.4D.427.A当0x时,sinxx,所以2asinxcos2x30在0x上有解,2211所以2asinx3cos2x22sin2x,所以asinx.由sinx2,当且仅当x时取sinxminsinx2等号,所以a的最小值是2.8.在2023年成都“世界大学生运动会”期间,组委会将甲,乙,丙,丁四位志愿者分配到A,B,C三个场馆执勤,若每个场馆至少分到一人,且甲不能被分配到A场馆,则不同分配方案的种数是A.48B.36C.24D.121228.C分两种情况:第一种情况,甲单独一人执勤一个场馆,共有C2C3A212种;第二种情况,甲和另112一个人一起执勤一个场馆,共有C3C2A212种,则共有24种.9.已知抛物线y24x,弦AB过其焦点,分别过弦的端点A,B的两条切线交于点C,点C到直线AB距离的最小值是11A.B.C.1D.24229.D设A(x1,y1),B(x2,y2),设过A处的直线是yy1kxx1,联立yy1kxx1,y4x得2441616422,,即2,则在处的切线方程为yyy14x1002y14y10,2y10,kAkkkkky1y1y2x12x,同理,B处的切线方程为y2y2x22x,设交点C的坐标为(x0,y0),点C(x0,y0)在两条切线上,所以y1y02x12x0,y2y02x22x0,则直线AB的方程是yy02x2x0.又AB过其焦点2学科网(北京)股份有限公司(1,0),易知交点C的轨迹是x1,所以C(1,y0),AB:yy02x2,所以交点C到直线AB的距|2y22|离是d04y2,所以当y0时d的最小值为2.2004y010.如图,四棱柱ABCDA1B1C1D1中,E为棱A1B1的中点,F为四边形DCC1D1对角线的交点,下列说法:①EF//平面BCC1B1;②若EF//平面ADD1A1,则BC//AD;③若四边形ABCD矩形,且EFD1C1,则四棱柱ABCDA1B1C1D1为直四棱柱.其中正确说法的个数是A.0B.1C.2D.310.C对于①,若EF//平面BCC1B1,过F作CC1的平行线交C1D1于其中点H,为连接EH,由于FH//平面BCC1B1,且EF//平面BCC1B1,所以平面EFH//平面BCC1B1,所以EH//平面BCC1B1,所以EH//C1B1.当A1D1与C1B1不平行时,EH//C1B1不成立.①是假命题.对于②,同①,EH//C1B1,则BC//AD.②是真命题.对于③,四边形ABCD矩形,所以AD//BC.又DD1//CC1,所以平面AA1D1D//平面BCC1B1,所以四棱柱ABCDA1B1C1D1可看作AA1D1D为上底面,BCC1B1为下底面的四棱柱,过F作CC1的平行线交C1D1于点H,则H为C1D1的中点,连接EH,由条件有EHD1C1,又EFD1C1,则DC11平面EFH,则FHD1C1,FH//DD1,所以D1DD1C1,又D1A1D1C1,所以DC11平面ADD1A1,则四棱柱ABCDA1B1C1D1为直四棱柱.③是真命题.1111.已知函数f(x)2x2xcosxx2,若af(2),bf(ee),cf(),则A.cbaB.acbC.cabD.bca11.Bf(x)2x2xcosxx2是偶函数,f¢()x(2x2x)ln2(2xsin)x>0,则f(x)在lnx1lnx0,上是增函数.构造函数g(x),则g'()x,令g'(x)>0,得0xe,令g'(x)0,得xx2ln2ln4x>e,所以g(x)在区间0,e上单调递增,在区间e,上单调递减.又,所以g(4)g()g(e),243学科网(北京)股份有限公司ln2ln4lnlne111111所以,所以22ee,所以f(2)f()f(e)ef(e)e,所以acb.24ex2y212.若双曲线C:1(a>0,b>0)的左、右焦点分别为F1,F2,过右焦点F2的直线l与双曲线C交于a2b2b0A,B两点,已知l的斜率为k,k,,且AF22F2B,F1AB60,则直线AB的斜率是a3A.23B.3C.D.2312.A设F2Bx,则F2A2x,由双曲线定义,得F1A2a2x,F1B2ax.222a在AFB中,由余弦定理,得FBFAAB2FAABcos600,解得x.111132213在AFF中,由余弦定理,得4c2FAFA2FAFAcos600,解得e.1212123x2y22法一:令a3tt>0,则c13t,b2t,C:1,设l:xmy13t0m,联立9t24t23222xy222813mt16t1,xmy13t,得4m9y813mty16t0,y1y2,y1y2.由9t24t24m294m291AF22F2B,得y12y2,则m,所以kAB23.23b2b2法二:设直线倾斜角l为,由双曲线第二定义得:AFa,BFa,又AF2FB,21ecos21ecos22221b则e1kAB,又k,,则kAB23.12a二、填空题:13.已知向量a(1,2),b(2,x),若ab,则实数x.13.1因为ab,所以1´2(2)x0,解得x1.y0ï14.已知实数x,y满足约束条件4x3y4,则z3x2y的最大值是.ïxy0314.3作出x,y满足的可行域如图中阴影部分所示,作出直线yx并平移,当直线过点A(1,0)时,2zmax3´12´03,所以z3x2y的最大值是3.4学科网(北京)股份有限公司n115.已知等比数列an的前n项和为Sn,若Snx×27,则a1a2an取最大值时,n的值3为.a1a1n115.3等比数列a的公比为q,由等比数列前n项和公式Sn×q,得x27,q.又n1q1q3n112a118,则an18×,a26,a32,a4,所以a1a2an取最大值时,n的值是3.33x2116.若x1,恒有lnexx2mx1,则m的取值范围是.exmxx2116.(,e2]由lnexx2mx1,得exmx>0在x1上恒成立,即me.exmx2xx222xx且lnx1lnemxemxx1,即lnx1x1lnemxemx.因为x2x2ex1在上是增函数,所以2x,所以ex1令,则ylnxx[1,)x1emxm.f()xxx(x1)(exx1)f'(x)0,所以f()x在[1,)上单调递增,f(x)f(1)e2,所以me2.x2min三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了去库存,某商场举行如下促销活动:有两个摸奖箱,A箱内有1个红球、1个黑球、8个白球,B箱内有4个红球、4个黑球、2个白球,每次摸奖后放回.消费额满300元有一次A箱内摸奖机会,消费额满600元有一次B箱内摸奖机会.每次机会均为从箱子中摸出1个球,中奖规则如下:红球奖50元代金券、黑球奖30元代金券、白球奖10元代金券.(Ⅰ)某三位顾客各有一次B箱内摸奖机会,求中奖10元代金券人数的分布列;(Ⅱ)某顾客消费额为600元,请问:这位顾客如何抽奖所得的代金券期望值较大?1解:(Ⅰ)三位顾客每人一次B箱内摸奖中10元代金券的概率都为,51中奖10元代金券的人数服从二项分布B(3,),55学科网(北京)股份有限公司k3kk14P(k)C3×,k0,1,2,3……………………………………4分55,故的分布列为01236448121P125125125125…………6分(Ⅱ)可以在A箱摸奖2次,或者在B箱内摸奖1次118A箱摸奖1次所得奖金的期望值为50´30´10´16…………………………8分101010,442B箱摸奖1次所得奖金的期望值为50´30´10´34,………………………10分101010A箱摸奖2次所得奖金的期望值为2´1632,B箱摸奖1次所得奖金的期望值为34,所以这位顾客选B箱摸奖1次所得奖金的期望值较大.…………………………………………12分18.(12分)ïsinxm,已知()mR,设f(x)l.ïcosx3l3m(Ⅰ)求函数f(x)的对称中心;233(Ⅱ)若ABC中,角A,B,C所对的边分别为a,b,c,f(A),且ABC外接圆的半径为,D33是BC边的中点,求线段AD长度的最大值.sinxmï323解:(Ⅰ)由3,得f(x)sinxcosxsin(x).lmcosx336ï3令xk,kZ,解得xk,kZ,所以函数f(x)的对称中心为66(k,0),kZ.……6分623233(Ⅱ)∵f(A)sin(A),A0,∴A,又且ABC外接圆的半径为,则363333
石室中学高2024届高三二模数学(理科)A卷答案2.19
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片