2017年湖北省黄石市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列各数是有理数的是( )A.﹣ B. C. D.π2.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为( )A.0.11×106 B.1.1×105 C.0.11×105 D.1.1×1063.(3分)下列图形中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.4.(3分)下列运算正确的是( )A.a0=0 B.a3+a2=a5 C.a2•a﹣1=a D.+=5.(3分)如图,该几何体主视图是( )A. B. C. D.6.(3分)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)第几次123456比赛成绩145147140129136125则这组成绩的中位数和平均数分别为( )A.137、138 B.138、137 C.138、138 D.137、1397.(3分)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=( )A.60° B.75° C.90° D.105°8.(3分)如图,是二次函数y=ax2+bx+c的图象,对下列结论:①ab>0,②abc>0,③<1,其中错误的个数是( )A.3 B.2 C.1 D.09.(3分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为( )A. B. C. D.10.(3分)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足( )A.BD<2 B.BD=2 C.BD>2 D.以上情况均有可能二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)因式分解:x2y﹣4y= .12.(3分)分式方程=﹣2的解为 .13.(3分)如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为 .14.(3分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为 米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)15.(3分)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为 .16.(3分)观察下列等式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数) .(写出最简计算结果即可)三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或验算步骤)17.(7分)计算:(﹣2)3++10+|﹣3+|.18.(7分)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.19.(7分)已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.20.(8分)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.21.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.22.(8分)随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km以上?23.(8分)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售单价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x;②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.(1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售单价﹣平均成本)24.(9分)在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.25.(10分)如图,直线l:y=kx+b(k<0)与函数y=(x>0)的图象相交于A、C两点,与x轴相交于T点,过A、C两点作x轴的垂线,垂足分别为B、D,过A、C两点作y轴的垂线,垂足分别为E、F;直线AE与CD相交于点P,连接DE.设A、C两点的坐标分别为(a,)、(c,),其中a>c>0.(1)如图①,求证:∠EDP=∠ACP;(2)如图②,若A、D、E、C四点在同一圆周上,求k的值;(3)如图③,已知c=1,且点P在直线BF上,试问:在线段AT上是否存在点M,使得OM⊥AM?如存在,请求出点M的坐标;若不存在,请说明理由.2017年湖北省黄石市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【分析】利用有理数的定义判断即可.【解答】解:有理数为﹣,无理数为,,π,故选:A.【点评】此题考查了实数,熟练掌握有理数与无理数的定义是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将110000用科学记数法表示为:1.1×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【分析】根据整式的运算法则以及分式的运算法则即可求出答案.【解答】解:(A)a0=1(a≠0),故A错误;(B)a2与a3不是同类项,故B错误;(D)原式=,故D错误;故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.5.【分析】根据三棱柱的特点并结合选项作出正确的判断即可.【解答】解:三棱柱的主视图为矩形,∵正对着的有一条棱,∴矩形的中间应该有一条实线,故选:B.【点评】考查了简单几何体的三视图的知识,解题的关键是了解中间的棱是实线还是虚线,难度不大.6.【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按从大到小的顺序排列是:125,129,136,140,145,147,故这组数据的中位数是:(136+140)÷2=138;平均数=(125+129+136+140+145+147)÷6=137.故选:B.【点评】本题考查了中位数的定义和平均数的求法,解题的关键是牢记定义,此题比较简单,易于掌握.7.【分析】根据直角三角形的性质得到BC=2DE=,根据勾股定理的逆定理得到∠ACB=90°,根据三角函数的定义得到∠A=60°,求得∠ACD=∠B=30°,得到∠DCE=60°,于是得到结论.【解答】解:∵CD⊥AB,E为BC边的中点,∴BC=2DE=,∵AB=2,AC=1,∴AC2+BC2=12+()2=4=22=AB2,∴∠ACB=90°,∵tan∠A==,∴∠A=60°,∴∠ACD=∠B=30°,∴∠DCE=60°,∵DE=CE,∴∠CDE=60°,∴∠CDE+∠ACD=90°,故选:C.【点评】本题考查了勾股定理的逆定理,直角三角形的性质,三角函数的定义,熟练掌握勾股定理的逆定理是解题的关键.8.【分析】根据抛物线的开口方向,判断a的符号,对称轴在y轴的右侧判断b的符号,抛物线和y轴的交点坐标判断c的符号,以及抛物线与x轴的交点个数判断b2﹣4ac的符号.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∴ab<0,故①错误;∵抛物线和y轴的负半轴相交,∴c<0,∴abc>0,故②正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴<1,故③正确;故选:C.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.9.【分析】连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE=AD,∠ODE=∠ADB=30°,根据锐角三角函数的定义即可得出结论.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故选:D.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.10.【分析】据∠DBE=∠ABE+∠CBD,且△BED的内角和为180°,得出∠AED+∠CDE=180°,判定AE∥CD,由AE=CD,推出四边形AEDC为平行四边形推出DE=AC.则BC=CD=DE=1,推出BD<BC+CD=2.【解答】证明:∵AE=AB,∴∠ABE=∠AEB,同理∠CBD=∠CDB∵∠ABC=2∠DBE,∴∠ABE+∠CBD=∠DBE,∵∠ABE=∠AEB,∠CBD=∠CDB,∴∠AEB+∠CDB=∠DBE,∴∠AED+∠CDE=180°,∴AE∥CD,∵AE=CD,∴四边形AEDC为平行四边形.∴DE=AC=AB=BC.∴△ABC是等边三角形,∴BC=CD=1,在△BCD中,∵BD<BC+CD,∴BD<2.故选:A.【点评】本题主要考查等腰三角形的性质:等腰三角形的底角相等,以及等边三角形的判定定理.解题时注意,同旁内角互补,两直线平行.二、填空题(本大题共6小题,每小题3分,共18分)11
2017年湖北省黄石市中考数学试卷
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片