广西贺州市2018年中考数学真题试题一、选择题:(本大题共12小题,每小题3分,共36分:给出的四个迭项中,只有一项是符合题目要求的。)1.(3.00分)在﹣1、1、、2这四个数中,最小的数是( )A.﹣1 B.1 C. D.22.(3.00分)如图,下列各组角中,互为对顶角的是( )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠53.(3.00分)4的平方根是( )A.2 B.﹣2 C.±2 D.164.(3.00分)下列图形中,属于中心对称图形的是( )A. B. C. D.5.(3.00分)若一组数据:1、2、x、4、5的众数为5,则这组数据的中位数是( )A.1 B.2 C.4 D.56.(3.00分)下列运算正确的是( )A.a2•a2=2a2 B.a2+a2=a4 C.(a3)2=a6 D.a8÷a2=a47.(3.00分)下列各式分解因式正确的是( )A.x2+6xy+9y2=(x+3y)2 B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y) D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)8.(3.00分)如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )A.9π B.10π C.11π D.12π9.(3.00分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<210.(3.00分)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为( )A.3 B.3 C.6 D.611.(3.00分)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为( )A. B. C. D.12.(3.00分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为( )A.()n﹣1 B.2n﹣1 C.()n D.2n 二、填空题(本大题共6小题,每小题3分,共18分;请把答案填在答題卡对应的位置上,在试卷上作答无效。)13.(3.00分)要使二次根式有意义,则x的取值范围是 .14.(3.00分)医学家发现了一种病毒,其长度约为0.00000029mm,用科学记数法表示为 mm.15.(3.00分)从﹣1、0、、π、5.1、7这6个数中随机抽取一个数,抽到无理数的概率是 .16.(3.00分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是 .17.(3.00分)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为 元.18.(3.00分)如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为 . 三、解答题:(本大题共8题,满分66分。解答应写出文字说明、证明过程或演算步骤。在试卷上作答无效。)19.(6.00分)计算:(﹣1)2018+|﹣|﹣(﹣π)0﹣2sin60°.20.(6.00分)解分式方程:+1=21.(8.00分)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时) 频数(人数) 频率2≤t<340.13≤t<4100.254≤t<5a0.155≤t<68b6≤t<7120.3合计401(1)表中的a= ,b= ;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?22.(8.00分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)23.(8.00分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?24.(8.00分)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.25.(10.00分)如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.26.(12.00分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由. 参考答案与试题解析一、选择题:(本大题共12小题,每小题3分,共36分:给出的四个迭项中,只有一项是符合题目要求的。)1.(3.00分)在﹣1、1、、2这四个数中,最小的数是( )A.﹣1 B.1 C. D.2【分析】根据实数大小比较的法则比较即可.【解答】解:在实数﹣1,1,,2中,最小的数是﹣1.故选:A.【点评】本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小. 2.(3.00分)如图,下列各组角中,互为对顶角的是( )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5【分析】直接利用对顶角的定义得出答案.【解答】解:互为对顶角的是:∠1和∠2.故选:A.【点评】此题主要考查了对顶角,正确把握对顶角的定义是解题关键. 3.(3.00分)4的平方根是( )A.2 B.﹣2 C.±2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 4.(3.00分)下列图形中,属于中心对称图形的是( )A. B. C. D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确,故选:D.【点评】本题主要考查了中心对称图形的概念,中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合. 5.(3.00分)若一组数据:1、2、x、4、5的众数为5,则这组数据的中位数是( )A.1 B.2 C.4 D.5【分析】由众数的定义得出x=5,再将数据重新排列后由中位数的定义可得答案.【解答】解:∵数据1、2、x、4、5的众数为5,∴x=5,将数据从小到大重新排列为1、2、4、5、5,所以中位数为4,故选:C.【点评】本题考查众数、中位数,解答本题的关键是明确题意,求出这组数据的中位数. 6.(3.00分)下列运算正确的是( )A.a2•a2=2a2 B.a2+a2=a4 C.(a3)2=a6 D.a8÷a2=a4【分析】根据合并同类项法则,单项式的乘法运算法则,单项式的除法运算法则,对各选项分析判断后利用排除法求解.【解答】解:A、a2•a2=a4,错误;B、a2+a2=2a2,错误;C、(a3)2=a6,正确;D、a8÷a2=a6,错误;故选:C.【点评】本题考查了整式的除法,单项式的乘法,合并同类项法则,是基础题,熟记运算法则是解题的关键. 7.(3.00分)下列各式分解因式正确的是( )A.x2+6xy+9y2=(x+3y)2 B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y) D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)【分析】直接利用公式法以及提取公因式法分解因式得出答案.【解答】解:A、x2+6xy+9y2=(x+3y)2,正确;B、2x2﹣4xy+9y2=无法分解因式,故此选项错误;C、2x2﹣8y2=2(x+2y)(x﹣2y),故此选项错误;D、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项错误;故选:A.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键. 8.(3.00分)如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )A.9π B.10π C.11π D.12π【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【解答】解:由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π.故选:B.【点评】此题主要考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键. 9.(3.00分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.【点评】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键. 10.(3.00分)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为( )A.3 B.3 C.6 D.6【分析】由题意得到三角形ADE为等腰直角三角形,利用勾股定理求出AE的长,再利用直角三角形中斜边上的中线等于斜边的一半,求出BC即可.【解答】解:∵AD=ED=3,AD⊥BC,∴△ADE为等腰直角三角形,根据勾股定理得:AE==3,∵Rt△ABC中,E为BC的中点,∴AE=BC,则BC=2AE=6,故选:D.【点评】此题考查了直角三角形斜边上的中线,以及等腰直角三角形,熟练掌握直角三角形斜边上的中线性质是解本题的关键. 11.(3.00分)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为( )A. B. C. D.【分析】连接OD,由垂径定理得出AB⊥CD,由三角函数求出BH=3,由勾股定理得出DH==4,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股
广西贺州市2018年中考数学真题试题(含解析)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片